Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 697: 151-180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38816122

RESUMO

Many self-assembling peptides can form amyloid like structures with different sizes and morphologies. Driven by non-covalent interactions, their aggregation can occur through distinct pathways. Additionally, they can bind metal ions to create enzyme like active sites that allow them to catalyze diverse reactions. Due to the non-crystalline nature of amyloids, it is quite challenging to elucidate their structures using experimental spectroscopic techniques. In this aspect, molecular dynamics (MD) simulations provide a useful tool to derive structures of these macromolecules in solution. They can be further validated by comparing with experimentally measured structural parameters. However, these simulations require a multi-step process starting from the selection of the initial structure to the analysis of MD trajectories. There are multiple force fields, parametrization protocols, equilibration processes, software and analysis tools available for this process. Therefore, it is complicated for non-experts to select the most relevant tools and perform these simulations effectively. In this chapter, a systematic methodology that covers all major aspects of modeling of catalytic peptides is provided in a user-friendly manner. It will be helpful for researchers in this critical area of research.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Peptídeos/química , Software , Conformação Proteica , Domínio Catalítico , Catálise
2.
Chem Biodivers ; 20(12): e202300957, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37888938

RESUMO

As COVID-19 infection caused severe public health concerns recently, the development of novel antivirals has become the need of the hour. Main protease (Mpro ) has been an attractive target for antiviral drugs since it plays a vital role in polyprotein processing and virus maturation. Herein we report the discovery of a novel class of inhibitors against the SARS-CoV-2, bearing histidine α-nitrile motif embedded on a simple dipeptide framework. In-vitro and in-silico studies revealed that the histidine α-nitrile motif envisioned to target the Mpro contributes to the inhibitory activity. Among a series of dipeptides synthesized featuring this novel structural motif, some dipeptides displayed strong viral reduction (EC50 =0.48 µM) with a high selectivity index, SI>454.54. These compounds also exhibit strong binding energies in the range of -28.7 to -34.2 Kcal/mol. The simple dipeptide structural framework, amenable to quick structural variations, coupled with ease of synthesis from readily available commercial starting materials are the major attractive features of this novel class of SARS-CoV-2 inhibitors. The histidine α-nitrile dipeptides raise the hope of discovering potent drug candidates based on this motif to fight the dreaded SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Histidina , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Dipeptídeos/farmacologia , Antivirais/farmacologia , Antivirais/química
3.
Chem Commun (Camb) ; 59(58): 8911-8928, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37366367

RESUMO

The selective hydrolysis of the extremely stable phosphoester, peptide and ester bonds of molecules by bio-inspired metal-based catalysts (metallohydrolases) is required in a wide range of biological, biotechnological and industrial applications. Despite the impressive advances made in the field, the ultimate goal of designing efficient enzyme mimics for these reactions is still elusive. Its realization will require a deeper understanding of the diverse chemical factors that influence the activities of both natural and synthetic catalysts. They include catalyst-substrate complexation, non-covalent interactions and the electronic nature of the metal ion, ligand environment and nucleophile. Based on our computational studies, their roles are discussed for several mono- and binuclear metallohydrolases and their synthetic analogues. Hydrolysis by natural metallohydrolases is found to be promoted by a ligand environment with low basicity, a metal bound water and a heterobinuclear metal center (in binuclear enzymes). Additionally, peptide and phosphoester hydrolysis is dominated by two competing effects, i.e. nucleophilicity and Lewis acid activation, respectively. In synthetic analogues, hydrolysis is facilitated by the inclusion of a second metal center, hydrophobic effects, a biological metal (Zn, Cu and Co) and a terminal hydroxyl nucleophile. Due to the absence of the protein environment, hydrolysis by these small molecules is exclusively influenced by nucleophile activation. The results gleaned from these studies will enhance the understanding of fundamental principles of multiple hydrolytic reactions. They will also advance the development of computational methods as a predictive tool to design more efficient catalysts for hydrolysis, Diels-Alder reaction, Michael addition, epoxide opening and aldol condensation.


Assuntos
Complexos de Coordenação , Metaloproteínas , Hidrólise , Complexos de Coordenação/química , Ligantes , Metaloproteínas/química , Peptídeos/química , Metais/química , Catálise
4.
Nano Converg ; 9(1): 18, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35478076

RESUMO

We have rationally designed a peptide that assembles into a redox-responsive, antimicrobial metallohydrogel. The resulting self-healing material can be rapidly reduced by ascorbate under physiological conditions and demonstrates a remarkable 160-fold change in hydrogel stiffness upon reduction. We provide a computational model of the hydrogel, explaining why position of nitrogen in non-natural amino acid pyridyl-alanine results in drastically different gelation properties of peptides with metal ions. Given its antimicrobial and rheological properties, the newly designed hydrogel can be used for removable wound dressing application, addressing a major unmet need in clinical care.

5.
Curr Pharm Biotechnol ; 21(15): 1674-1687, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614743

RESUMO

BACKGROUND: Metal Nanoparticles (NPs) have been widely used for various applications in biomedical sciences, including in drug delivery, and as therapeutic agents, but limited owing to their toxicity towards the healthy tissue. This warrants an alternative method, which can achieve the desired activity with much reduced or no toxicity. Being a biological product, Withania somnifera (W. somnifera) is environment friendly, besides being less toxic as compared to metal-based NPs. However, the exact mechanism of action of W. somnifera for its antibacterial activities has not been studied so far. OBJECTIVE: To develop "silver nanoparticles with root extract of W. somnifera (AgNPs-REWS)" for antimicrobial and anticancer activities. Furthermore, the analysis of their mechanism of action will be studied. METHODS: Using the in-silico approach, the molecular docking study was performed to evaluate the possible antibacterial mechanism of W. somnifera phytochemicals such as Anaferine, Somniferine, Stigmasterol, Withaferin A, Withanolide- A, G, M, and Withanone by the inhibition of Penicillin- Binding Protein 4 (PBP4). Next, we utilized a bottom-up approach for the green synthesis of AgNPs- REWS, performed an in-detail phytochemical analysis, confirmed the AgNPs-REWS by SEM, UVvisible spectroscopy, XRD, FT-IR, and HPLC. Eventually, we examined their antibacterial activity. RESULTS: The result of molecular docking suggests that WS phytochemicals (Somniferine, Withaferin A, Withanolide A, Withanolide G, Withanolide M, and Withanone) possess the higher binding affinity toward the active site of PBP4 as compared to the Ampicillin (-6.39 kcal/mol) reference molecule. These phytochemicals predicted as potent inhibitors of PBP4. Next, as a proof-of-concept, AgNPs- REWS showed significant antibacterial effect as compared to crude, and control; against Xanthomonas and Ralstonia species. CONCLUSION: The in-silico and molecular docking analysis showed that active constituents of W. somnifera such as Somniferine, Withaferin A, Withanolide A, Withanolide G, Withanolide M, and Withanone possess inhibition potential for PBP4 and are responsible for the anti-bacterial property of W. somnifera extract. This study also establishes that AgNPs via the green synthesis with REWS showed enhanced antibacterial activity towards pathogenic bacteria.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Proteínas de Ligação às Penicilinas/metabolismo , Extratos Vegetais/farmacologia , Prata/farmacologia , Withania/metabolismo , Antibacterianos/química , Domínio Catalítico , Simulação de Acoplamento Molecular , Extratos Vegetais/metabolismo , Raízes de Plantas/metabolismo , Ligação Proteica , Ralstonia solanacearum/efeitos dos fármacos , Prata/química , Xanthomonas campestris/efeitos dos fármacos
6.
Artigo em Inglês | MEDLINE | ID: mdl-30950358

RESUMO

BACKGROUND: Phycocyanin is an algae-derived protein, which binds to pigment for harvesting light. It has been reported in various different species, including that of red algae, dinoflagellates, and cryptophyta. Importantly, phycocyanin has enormous applications, including cosmetic colorant, food additive, biotechnology, diagnostics, fluorescence detection probe, an anticancer agent, anti-inflammatory, immune enhancer, etc. In addition, several different algae were utilized for the isolation of cyano-phycocyanin (C-PC), but most of the purification methods consist of several steps of crude extraction. AIM: To isolate C-PC from a new source of microalgae with better purity level and to evaluate its antimicrobial, algicidal, and antiradical activities. METHODS: Biological activity, permeability, pharmacokinetics, and toxicity profile of C-PC were predicted by in silico studies. C-PC was purified and isolated by using ammonium sulphate precipitation, ion-exchange chromatography and gel-filtration chromatography. C-PC was characterized by SDS-PAGE and elution profile (purity ratio) analysis. Antimicrobial and algicial activities of C-PC were evaluated by the microtitre plate based assays. Antiradical activity of C-PC was evaluated by DPPH- and ABTS*+ radical scavenging assays. CONCLUSION: C-PC was extracted from Oscillatoria minima for the first time, followed by its quantitative as well qualitative evaluation, indicating a new alternative source of this important protein. Furthermore, the antimicrobial, algicidal, and antiradical activities of the isolated C-PC extract have been demonstrated by both in silico as well as in vitro methods.


Assuntos
Proteínas de Algas , Cianobactérias , Ficocianina , Proteínas de Algas/análise , Proteínas de Algas/isolamento & purificação , Proteínas de Algas/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Biofarmácia/métodos , Técnicas de Química Analítica/métodos , Simulação por Computador , Herbicidas/farmacologia , Técnicas In Vitro/métodos , Microalgas , Ficocianina/análise , Ficocianina/química , Ficocianina/farmacologia , Rodófitas
7.
Neurochem Res ; 44(7): 1665-1677, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30949934

RESUMO

Dementia is considered as the frequent cause of neurodegenerative mental disorder such as Alzheimer's disease (AD) amongst elderly people. Free radicals as well as cholinergic deficit neurons within nucleus basalis magnocellularis demonstrated to attribute with aggregation of ß amyloid which further acts as an essential hallmark in AD. Various phenolic phytoconstituents exists in Trianthema portulastrum (TP) leaves have been reported as active against various neurological disorders. The current investigation was undertaken to evaluate the antiamnesic potential of butanol fraction of TP hydroethanolic extract (BFTP) by utilizing rodent models of elevated plus maze (EPM) and Hebbs William Maze (HWM) along with in vitro and in vivo antioxidant as well as acetylcholinesterase (AChE) inhibition studies. Molecular docking studies were also performed for evaluation of molecular interaction of existed phenolic compounds in BFTP. In vitro antioxidant study revealed concentration dependant strong ability of BFTP to inhibit free radicals. In vitro AChE inhibition study showed competitive type of inhibition kinetics. BFTP significantly reversed (p < 0.005 versus scopolamine) the damaging effect of scopolamine by reducing TL (Transfer Latency) and TRC (Time taken to recognize the reward chamber) in the EPM and HWM, respectively. BFTP also contributed towards increased (p < 0.005 versus scopolamine) enzymatic antioxidant as well as hippocampal acetylcholine (ACh) levels. Histological studies also supported the results as BFTP pretreated mice significantly reversed the scopolamine induced histological changes in hippocampal region. Docking studies confirmed chlorogenic acid has the most significant binding affinity towards AChE. This research finding concludes that BFTP could be a beneficial agent for management of cognition and behavioral disorders associated with AD.


Assuntos
Aizoaceae/química , Doença de Alzheimer/tratamento farmacológico , Amnésia/tratamento farmacológico , Nootrópicos/uso terapêutico , Fenóis/uso terapêutico , Extratos Vegetais/uso terapêutico , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Amnésia/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Catalase/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/patologia , Glutationa Peroxidase/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Folhas de Planta/química , Escopolamina , Superóxido Dismutase/metabolismo
8.
Mini Rev Med Chem ; 18(19): 1611-1623, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30068272

RESUMO

Farnesyl Transferase is a hetero-dimer transferase that targets Ras proteins and attaches a farnesyl group to it. This Ras protein, on localization to the cell membrane, has the ability to induce activation of various growth and proliferation pathways of the cell. Over-activation of mutated Ras may lead to the development of cancer. Farnesyl Transferase catalyses the initial step in the posttranslational modification of normal as well as mutated Ras gene, thus facilitating its tethering to the cell membrane. Inhibition of Farnesyl Transferase is the main step in restricting the activity of mutant Ras protein. Thus the above enzyme has emerged as a novel target for anti-cancer agents. Here we review the role of Farnesyl Transferase in tumorigenesis and various compounds of synthetic and natural origin acting as Farnesyl Transferase inhibitors as potential anti-cancer agents.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Animais , Antineoplásicos/química , Inibidores Enzimáticos/química , Farnesiltranstransferase/química , Farnesiltranstransferase/metabolismo , Genes ras , Humanos , Sistema de Sinalização das MAP Quinases , Neoplasias/enzimologia , Neoplasias/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA