Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(2): 108817, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38533452

RESUMO

Plant Toll/interleukin-1 receptor/resistance protein (TIR) type nucleotide-binding and leucine-rich repeat immune receptors (NLRs) require enhanced disease susceptibility 1 (EDS1) family proteins and the helper NLRs NRG1 and ADR1 for immune activation. We show that the NbEDS1-NbSAG101b-NbNRG1 signaling pathway in N. benthamiana is necessary for cell death signaling by TIR-NLRs from a range of plant species, suggesting a universal requirement for this module in TIR-NLR-mediated cell death in N. benthamiana. We also find that TIR domains physically associate with NbEDS1, NbPAD4, and NbSAG101 in planta, independently of each other. Furthermore, NbNRG1 associates with NbSAG101b, but not with other EDS1 family members, via its C-terminal EP domain. Physical interaction between activated TIRs and EDS1 signaling complexes may facilitate the transfer of low abundance products of TIR catalytic activity or alter TIR catalytic activity to favor the production of EDS1 heterodimer ligands.

2.
New Phytol ; 241(6): 2621-2636, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38282212

RESUMO

Plant resistance (R) and pathogen avirulence (Avr) gene interactions play a vital role in pathogen resistance. Efficient molecular screening tools for crops lack far behind their model organism counterparts, yet they are essential to rapidly identify agriculturally important molecular interactions that trigger host resistance. Here, we have developed a novel wheat protoplast assay that enables efficient screening of Avr/R interactions at scale. Our assay allows access to the extensive gene pool of phenotypically described R genes because it does not require the overexpression of cloned R genes. It is suitable for multiplexed Avr screening, with interactions tested in pools of up to 50 Avr candidates. We identified Avr/R-induced defense genes to create a promoter-luciferase reporter. Then, we combined this with a dual-color ratiometric reporter system that normalizes read-outs accounting for experimental variability and Avr/R-induced cell death. Moreover, we introduced a self-replicative plasmid reducing the amount of plasmid used in the assay. Our assay increases the throughput of Avr candidate screening, accelerating the study of cellular defense signaling and resistance gene identification in wheat. We anticipate that our assay will significantly accelerate Avr identification for many wheat pathogens, leading to improved genome-guided pathogen surveillance and breeding of disease-resistant crops.


Assuntos
Melhoramento Vegetal , Protoplastos , Virulência/genética , Morte Celular , Regiões Promotoras Genéticas/genética , Doenças das Plantas/genética
3.
Curr Biol ; 33(11): R650-R657, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37279695

RESUMO

Genome editing (GE) technologies allow rapid trait manipulation in crop plants. Disease resistance is one of the best test cases for this technology because it is usually monogenic and under constant challenge by rapidly evolving pathogens. Classical methods suffer from severe bottlenecks in discovery of new resistance (R) genes and their incorporation into elite varieties, largely because they are identified in landraces and species with limited sexual compatibility, and may last only a few years before losing effectiveness. Most plant R genes encode receptors located externally on the plasma membrane (receptor proteins and receptor kinases) or internally as NOD-like receptors (NLR). Both have well defined molecular interactions with activating pathogen ligands which are virulence proteins known as effectors. As structural data for R-effector interactions accumulate, promising strategies for rational manipulation of binding specificities are emerging. This offers the potential to change elite varieties directly rather than through 10-20 years of crossing. Successful application of GE is already evident in mutation of susceptibility (S) genes required for infection. GE is in its infancy with only four modified organisms grown currently in the US. The Anglosphere and Japan seem more open to deployment of these technologies, with the European Union, Switzerland and New Zealand being notably more conservative. Consumers are not well informed on the differences between GE and classical genetic modification (GM). The possibility that minor GE changes will not be regulated as GM offers the hope that current bottlenecks to resistance breeding can be eased.


Assuntos
Resistência à Doença , Edição de Genes , Plantas Geneticamente Modificadas/genética , Resistência à Doença/genética , Melhoramento Vegetal , Produtos Agrícolas/genética , Genoma de Planta
4.
Nat Commun ; 14(1): 2568, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142566

RESUMO

In both plants and animals, nucleotide-binding leucine-rich repeat (NLR) immune receptors play critical roles in pathogen recognition and activation of innate immunity. In plants, NLRs recognise pathogen-derived effector proteins and initiate effector-triggered immunity (ETI). However, the molecular mechanisms that link NLR-mediated effector recognition and downstream signalling are not fully understood. By exploiting the well-characterised tomato Prf/Pto NLR resistance complex, we identified the 14-3-3 proteins TFT1 and TFT3 as interacting partners of both the NLR complex and the protein kinase MAPKKKα. Moreover, we identified the helper NRC proteins (NLR-required for cell death) as integral components of the Prf /Pto NLR recognition complex. Notably our studies revealed that TFTs and NRCs interact with distinct modules of the NLR complex and, following effector recognition, dissociate facilitating downstream signalling. Thus, our data provide a mechanistic link between activation of immune receptors and initiation of downstream signalling cascades.


Assuntos
Solanum lycopersicum , Animais , Proteínas , Transdução de Sinais , Imunidade Inata , Plantas/metabolismo , Receptores Imunológicos , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Doenças das Plantas
5.
Essays Biochem ; 66(5): 471-483, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35731245

RESUMO

Plants deploy extracellular and intracellular immune receptors to sense and restrict pathogen attacks. Rapidly evolving pathogen effectors play crucial roles in suppressing plant immunity but are also monitored by intracellular nucleotide-binding, leucine-rich repeat immune receptors (NLRs), leading to effector-triggered immunity (ETI). Here, we review how NLRs recognize effectors with a focus on direct interactions and summarize recent research findings on the signalling functions of NLRs. Coiled-coil (CC)-type NLR proteins execute immune responses by oligomerizing to form membrane-penetrating ion channels after effector recognition. Some CC-NLRs function in sensor-helper networks with the sensor NLR triggering oligomerization of the helper NLR. Toll/interleukin-1 receptor (TIR)-type NLR proteins possess catalytic activities that are activated upon effector recognition-induced oligomerization. Small molecules produced by TIR activity are detected by additional signalling partners of the EDS1 lipase-like family (enhanced disease susceptibility 1), leading to activation of helper NLRs that trigger the defense response.


Assuntos
Proteínas NLR , Doenças das Plantas , Proteínas de Plantas , Receptores Imunológicos , Canais Iônicos/metabolismo , Leucina/metabolismo , Lipase/metabolismo , Proteínas NLR/metabolismo , Nucleotídeos/metabolismo , Proteínas de Plantas/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais
6.
Curr Biol ; 32(8): R382-R384, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35472431

RESUMO

Mutating a disease susceptibility gene in barley is a favoured trick of plant breeders to confer resistance to powdery mildew disease. New work shows how the same feat can be performed in wheat while mellowing the impact of unwanted side effects.


Assuntos
Ascomicetos , Hordeum , Ascomicetos/genética , Resistência à Doença/genética , Hordeum/genética , Doenças das Plantas/genética , Triticum/genética
7.
mBio ; 13(2): e0244421, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35404122

RESUMO

The kingdom Fungi is highly diverse in morphology and ecosystem function. Yet fungi are challenging to characterize as they can be difficult to culture and morphologically indistinct. Overall, their description and analysis lag far behind other microbes such as bacteria. Classification of species via high-throughput sequencing is increasingly becoming the norm for pathogen detection, microbiome studies, and environmental monitoring. With the rapid development of sequencing technologies, however, standardized procedures for taxonomic assignment of long sequence reads have not yet been well established. Focusing on nanopore sequencing technology, we compared classification and community composition analysis pipelines using shotgun and amplicon sequencing data generated from mock communities comprising 43 fungal species. We show that regardless of the sequencing methodology used, the highest accuracy of species identification was achieved by sequence alignment against a fungal-specific database. During the assessment of classification algorithms, we found that applying cutoffs to the query coverage of each read or contig significantly improved the classification accuracy and community composition analysis without major data loss. We also generated draft genome assemblies for three fungal species from nanopore data which were absent from genome databases. Our study improves sequence-based classification and estimation of relative sequence abundance using real fungal community data and provides a practical guide for the design of metagenomics analyses focusing on fungi. IMPORTANCE Our study is unique in that it provides an in-depth comparative study of a real-life complex fungal community analyzed with multiple long- and short-read sequencing approaches. These technologies and their application are currently of great interest to diverse biologists as they seek to characterize the community compositions of microbiomes. Although great progress has been made on bacterial community compositions, microbial eukaryotes such as fungi clearly lag behind. Our study provides a detailed breakdown of strategies to improve species identification with immediate relevance to real-world studies. We find that real-life data sets do not always behave as expected, distinct from reports based on simulated data sets.


Assuntos
Microbiota , Micobioma , Bactérias/genética , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Microbiota/genética
8.
Genome Biol ; 23(1): 84, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337367

RESUMO

BACKGROUND: Most animals and plants have more than one set of chromosomes and package these haplotypes into a single nucleus within each cell. In contrast, many fungal species carry multiple haploid nuclei per cell. Rust fungi are such species with two nuclei (karyons) that contain a full set of haploid chromosomes each. The physical separation of haplotypes in dikaryons means that, unlike in diploids, Hi-C chromatin contacts between haplotypes are false-positive signals. RESULTS: We generate the first chromosome-scale, fully-phased assembly for the dikaryotic leaf rust fungus Puccinia triticina and compare Nanopore MinION and PacBio HiFi sequence-based assemblies. We show that false-positive Hi-C contacts between haplotypes are predominantly caused by phase switches rather than by collapsed regions or Hi-C read mis-mappings. We introduce a method for phasing of dikaryotic genomes into the two haplotypes using Hi-C contact graphs, including a phase switch correction step. In the HiFi assembly, relatively few phase switches occur, and these are predominantly located at haplotig boundaries and can be readily corrected. In contrast, phase switches are widespread throughout the Nanopore assembly. We show that haploid genome read coverage of 30-40 times using HiFi sequencing is required for phasing of the leaf rust genome, with 0.7% heterozygosity, and that HiFi sequencing resolves genomic regions with low heterozygosity that are otherwise collapsed in the Nanopore assembly. CONCLUSIONS: This first Hi-C based phasing pipeline for dikaryons and comparison of long-read sequencing technologies will inform future genome assembly and haplotype phasing projects in other non-haploid organisms.


Assuntos
Nanoporos , Animais , Benchmarking , Genoma , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
10.
J Exp Bot ; 72(18): 6164-6174, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34059899

RESUMO

C-TERMINALLY ENCODED PEPTIDEs (CEPs) control diverse responses in plants including root development, root system architecture, nitrogen demand signalling, and nutrient allocation that influences yield, and there is evidence that different ligands impart different phenotypic responses. Thus, there is a need for a simple method that identifies bona fide CEP hormone-receptor pairings in vivo and examines whether different CEP family peptides bind the same receptor. We used formaldehyde or photoactivation to cross-link fluorescently tagged group 1 or group 2 CEPs to receptors in semi-purified Medicago truncatula or Arabidopsis thaliana leaf vascular tissues to verify that COMPACT ROOT ARCHITECTURE 2 (CRA2) is the Medicago CEP receptor, and to investigate whether sequence diversity within the CEP family influences receptor binding. Formaldehyde cross-linked the fluorescein isothiocyanate (FITC)-tagged Medicago group 1 CEP (MtCEP1) to wild-type Medicago or Arabidopsis vascular tissue cells, but not to the CEP receptor mutants, cra2 or cepr1. Binding competition showed that unlabelled MtCEP1 displaces FITC-MtCEP1 from CRA2. In contrast, the group 2 CEP, FITC-AtCEP14, bound to vascular tissue independently of CEPR1 or CRA2, and AtCEP14 did not complete with FITC-MtCEP1 to bind CEP receptors. The binding of a photoactivatable FITC-MtCEP1 to the periphery of Medicago vascular cells suggested that CRA2 localizes to the plasma membrane. We separated and visualized a fluorescent 105 kDa protein corresponding to the photo-cross-linked FITC-MtCEP1-CRA2 complex using SDS-PAGE. Mass spectrometry identified CRA2-specific peptides in this protein band. The results indicate that FITC-MtCEP1 binds to CRA2, MtCRA2 and AtCEPR1 are functionally equivalent, and the binding specificities of group 1 and group 2 CEPs are distinct. Using formaldehyde or photoactivated cross-linking of biologically active, fluorescently tagged ligands may find wider utility by identifying CEP-CEP receptor pairings in diverse plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Medicago truncatula , Reguladores de Crescimento de Plantas , Arabidopsis/genética , Proteínas de Plantas , Raízes de Plantas , Receptores de Peptídeos
11.
Curr Opin Plant Biol ; 56: 127-134, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32610220

RESUMO

Plant diseases threaten global food security and biodiversity. Rapid dispersal of pathogens particularly via human means has accelerated in recent years. Timely detection of plant pathogens is essential to limit their spread. At the same time, international regulations must keep abreast of advances in plant disease diagnostics. In this review we describe recent progress in developing modern plant disease diagnostics based on detection of pathogen components, high-throughput image analysis, remote sensing, and machine learning. We discuss how different diagnostic approaches can be integrated in detection frameworks that can work at different scales and account for sampling biases. Lastly, we briefly discuss the requirements to apply these advances under regulatory settings to improve biosecurity measures globally.


Assuntos
Doenças das Plantas , Plantas , Humanos
12.
PLoS Pathog ; 16(4): e1008475, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32339200

RESUMO

The nucleotide-binding, leucine-rich repeat-containing (NLR) class of immune receptors of plants and animals recognize pathogen-encoded proteins and trigger host defenses. Although animal NLRs form oligomers upon pathogen recognition to activate downstream signaling, the mechanisms of plant NLR activation remain largely elusive. Tm-22 is a plasma membrane (PM)-localized coiled coil (CC)-type NLR and confers resistance to Tobacco mosaic virus (TMV) by recognizing its viral movement protein (MP). In this study, we found that Tm-22 self-associates upon recognition of MP. The CC domain of Tm-22 is the signaling domain and its function requires PM localization and self-association. The nucleotide-binding (NB-ARC) domain is important for Tm-22 self-interaction and regulates activation of the CC domain through its nucleotide-binding and self-association. (d)ATP binding may alter the NB-ARC conformation to release its suppression of Tm-22 CC domain-mediated cell death. Our findings provide the first example of signaling domain for PM-localized NLR and insight into PM-localized NLR activation.


Assuntos
Proteínas NLR/metabolismo , Nicotiana/metabolismo , Nicotiana/virologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Receptores Imunológicos/metabolismo , Membrana Celular/metabolismo , Resistência à Doença , Proteínas NLR/imunologia , Doenças das Plantas/virologia , Imunidade Vegetal , Proteínas de Plantas/imunologia , Ligação Proteica , Domínios Proteicos , Receptores Imunológicos/imunologia , Transdução de Sinais , Nicotiana/imunologia , Vírus do Mosaico do Tabaco/metabolismo , Vírus do Mosaico do Tabaco/patogenicidade
13.
Genome Biol Evol ; 12(5): 597-617, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32271913

RESUMO

Stripe rust of wheat, caused by the obligate biotrophic fungus Puccinia striiformis f.sp. tritici, is a major threat to wheat production worldwide with an estimated yearly loss of US $1 billion. The recent advances in long-read sequencing technologies and tailored-assembly algorithms enabled us to disentangle the two haploid genomes of Pst. This provides us with haplotype-specific information at a whole-genome level. Exploiting this novel information, we perform whole-genome comparative genomics of two P. striiformis f.sp. tritici isolates with contrasting life histories. We compare one isolate of the old European lineage (PstS0), which has been asexual for over 50 years, and a Warrior isolate (PstS7 lineage) from a novel incursion into Europe in 2011 from a sexual population in the Himalayan region. This comparison provides evidence that long-term asexual evolution leads to genome expansion, accumulation of transposable elements, and increased heterozygosity at the single nucleotide, structural, and allele levels. At the whole-genome level, candidate effectors are not compartmentalized and do not exhibit reduced levels of synteny. Yet we were able to identify two subsets of candidate effector populations. About 70% of candidate effectors are invariant between the two isolates, whereas 30% are hypervariable. The latter might be involved in host adaptation on wheat and explain the different phenotypes of the two isolates. Overall, this detailed comparative analysis of two haplotype-aware assemblies of P. striiformis f.sp. tritici is the first step in understanding the evolution of dikaryotic rust fungi at a whole-genome level.


Assuntos
Evolução Molecular , Genoma Fúngico , Haplótipos , Doenças das Plantas/genética , Puccinia/genética , Puccinia/patogenicidade , Triticum/microbiologia , Proteínas Fúngicas/genética , Fenótipo , Doenças das Plantas/microbiologia
14.
Med Mycol ; 58(5): 650-660, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31758176

RESUMO

The advent of next generation sequencing technologies has enabled the characterization of the genetic content of entire communities of organisms, including those in clinical specimens, without prior culturing. The MinION from Oxford Nanopore Technologies offers real-time, direct sequencing of long DNA fragments directly from clinical samples. The aim of this study was to assess the ability of unbiased, genome-wide, long-read, shotgun sequencing using MinION to identify Pneumocystis jirovecii directly from respiratory tract specimens and to characterize the associated mycobiome. Pneumocystis pneumonia (PCP) is a life-threatening fungal disease caused by P. jirovecii. Currently, the diagnosis of PCP relies on direct microscopic or real-time quantitative polymerase chain reaction (PCR) examination of respiratory tract specimens, as P. jirovecii cannot be cultured readily in vitro. P. jirovecii DNA was detected in bronchoalveolar lavage (BAL) and induced sputum (IS) samples from three patients with confirmed PCP. Other fungi present in the associated mycobiome included known human pathogens (Aspergillus, Cryptococcus, Pichia) as well as commensal species (Candida, Malassezia, Bipolaris). We have established optimized sample preparation conditions for the generation of high-quality data, curated databases, and data analysis tools, which are key to the application of long-read MinION sequencing leading to a fundamental new approach in fungal diagnostics.


Assuntos
Metagenômica/métodos , Pneumocystis carinii/classificação , Pneumocystis carinii/genética , Pneumonia por Pneumocystis/diagnóstico , Líquido da Lavagem Broncoalveolar/microbiologia , DNA Fúngico , Genoma Fúngico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Micobioma/genética , Nanoporos , Pneumonia por Pneumocystis/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Sistema Respiratório/microbiologia , Sensibilidade e Especificidade , Escarro/microbiologia
15.
Science ; 365(6455): 793-799, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31439792

RESUMO

SARM1 (sterile alpha and TIR motif containing 1) is responsible for depletion of nicotinamide adenine dinucleotide in its oxidized form (NAD+) during Wallerian degeneration associated with neuropathies. Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogen effector proteins and trigger localized cell death to restrict pathogen infection. Both processes depend on closely related Toll/interleukin-1 receptor (TIR) domains in these proteins, which, as we show, feature self-association-dependent NAD+ cleavage activity associated with cell death signaling. We further show that SARM1 SAM (sterile alpha motif) domains form an octamer essential for axon degeneration that contributes to TIR domain enzymatic activity. The crystal structures of ribose and NADP+ (the oxidized form of nicotinamide adenine dinucleotide phosphate) complexes of SARM1 and plant NLR RUN1 TIR domains, respectively, reveal a conserved substrate binding site. NAD+ cleavage by TIR domains is therefore a conserved feature of animal and plant cell death signaling pathways.


Assuntos
Proteínas do Domínio Armadillo/química , Proteínas do Citoesqueleto/química , NAD+ Nucleosidase/química , NAD/metabolismo , Proteínas de Plantas/química , Domínios Proteicos , Receptores Imunológicos/química , Animais , Proteínas do Domínio Armadillo/metabolismo , Axônios/enzimologia , Axônios/patologia , Sítios de Ligação , Morte Celular , Sequência Conservada , Cristalografia por Raios X , Proteínas do Citoesqueleto/metabolismo , Células HEK293 , Humanos , Camundongos , NAD+ Nucleosidase/metabolismo , NADP/metabolismo , Neurônios/enzimologia , Proteínas de Plantas/metabolismo , Multimerização Proteica , Receptores Imunológicos/metabolismo , Degeneração Walleriana/enzimologia , Degeneração Walleriana/patologia
16.
Mol Ecol Resour ; 19(1): 77-89, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30118581

RESUMO

Long-read sequencing technologies are transforming our ability to assemble highly complex genomes. Realizing their full potential is critically reliant on extracting high-quality, high-molecular-weight (HMW) DNA from the organisms of interest. This is especially the case for the portable MinION sequencer which enables all laboratories to undertake their own genome sequencing projects, due to its low entry cost and minimal spatial footprint. One challenge of the MinION is that each group has to independently establish effective protocols for using the instrument, which can be time-consuming and costly. Here, we present a workflow and protocols that enabled us to establish MinION sequencing in our own laboratories, based on optimizing DNA extraction from a challenging plant tissue as a case study. Following the workflow illustrated, we were able to reliably and repeatedly obtain >6.5 Gb of long-read sequencing data with a mean read length of 13 kb and an N50 of 26 kb. Our protocols are open source and can be performed in any laboratory without special equipment. We also illustrate some more elaborate workflows which can increase mean and average read lengths if this is desired. We envision that our workflow for establishing MinION sequencing, including the illustration of potential pitfalls and suggestions of how to adapt it to other tissue types, will be useful to others who plan to establish long-read sequencing in their own laboratories.


Assuntos
DNA de Plantas/isolamento & purificação , Eucalyptus/genética , Análise de Sequência de DNA/métodos , DNA de Plantas/química , DNA de Plantas/genética , Fluxo de Trabalho
17.
Front Plant Sci ; 9: 688, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875790

RESUMO

The plant pathogen Pseudomonas syringae injects about 30 different virulence proteins, so-called effectors, via a type III secretion system into plant cells to promote disease. Although some of these effectors are known to suppress either pattern-triggered immunity (PTI) or effector-triggered immunity (ETI), the mode of action of most of them remains unknown. Here, we used transient expression in Nicotiana benthamiana, to test the abilities of type III effectors of Pseudomonas syringae pv. tomato (Pto) DC3000 and Pseudomonas syringae pv. tabaci (Pta) 11528 to interfere with plant immunity. We monitored the sequential and rapid bursts of cytoplasmic Ca2+ and reactive oxygen species (ROS), the subsequent induction of defense gene expression, and promotion of cell death. We found that several effector proteins caused cell death, but independently of the known plant immune regulator NbSGT1, a gene essential for ETI. Furthermore, many effectors delayed or blocked the cell death-promoting activity of other effectors, thereby potentially contributing to pathogenesis. Secondly, a large number of effectors were able to suppress PAMP-induced defense responses. In the majority of cases, this resulted in suppression of all studied PAMP responses, suggesting that these effectors target common elements of PTI. However, effectors also targeted different steps within defense pathways and could be divided into three major groups based on their suppressive activities. Finally, the abilities of effectors of both Pto DC3000 and Pta 11528 to suppress plant immunity was conserved in most but not all cases. Overall, our data present a comprehensive picture of the mode of action of these effectors and indicate that most of them suppress plant defenses in various ways.

18.
mBio ; 9(1)2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463655

RESUMO

Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae, is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous de novo genome assemblies of two P. coronata f. sp. avenae isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in P. coronata f. sp. avenaeIMPORTANCE Disease management strategies for oat crown rust are challenged by the rapid evolution of Puccinia coronata f. sp. avenae, which renders resistance genes in oat varieties ineffective. Despite the economic importance of understanding P. coronata f. sp. avenae, resources to study the molecular mechanisms underpinning pathogenicity and the emergence of new virulence traits are lacking. Such limitations are partly due to the obligate biotrophic lifestyle of P. coronata f. sp. avenae as well as the dikaryotic nature of the genome, features that are also shared with other important rust pathogens. This study reports the first release of a haplotype-phased genome assembly for a dikaryotic fungal species and demonstrates the amenability of using emerging technologies to investigate genetic diversity in populations of P. coronata f. sp. avenae.


Assuntos
Avena/microbiologia , Basidiomycota/classificação , Basidiomycota/genética , Variação Genética , Genótipo , Doenças das Plantas/microbiologia , Basidiomycota/isolamento & purificação , Perfilação da Expressão Gênica , Genoma Fúngico , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único
19.
mBio ; 9(1)2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463659

RESUMO

A long-standing biological question is how evolution has shaped the genomic architecture of dikaryotic fungi. To answer this, high-quality genomic resources that enable haplotype comparisons are essential. Short-read genome assemblies for dikaryotic fungi are highly fragmented and lack haplotype-specific information due to the high heterozygosity and repeat content of these genomes. Here, we present a diploid-aware assembly of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici based on long reads using the FALCON-Unzip assembler. Transcriptome sequencing data sets were used to infer high-quality gene models and identify virulence genes involved in plant infection referred to as effectors. This represents the most complete Puccinia striiformis f. sp. tritici genome assembly to date (83 Mb, 156 contigs, N50 of 1.5 Mb) and provides phased haplotype information for over 92% of the genome. Comparisons of the phase blocks revealed high interhaplotype diversity of over 6%. More than 25% of all genes lack a clear allelic counterpart. When we investigated genome features that potentially promote the rapid evolution of virulence, we found that candidate effector genes are spatially associated with conserved genes commonly found in basidiomycetes. Yet, candidate effectors that lack an allelic counterpart are more distant from conserved genes than allelic candidate effectors and are less likely to be evolutionarily conserved within the P. striiformis species complex and Pucciniales In summary, this haplotype-phased assembly enabled us to discover novel genome features of a dikaryotic plant-pathogenic fungus previously hidden in collapsed and fragmented genome assemblies.IMPORTANCE Current representations of eukaryotic microbial genomes are haploid, hiding the genomic diversity intrinsic to diploid and polyploid life forms. This hidden diversity contributes to the organism's evolutionary potential and ability to adapt to stress conditions. Yet, it is challenging to provide haplotype-specific information at a whole-genome level. Here, we take advantage of long-read DNA sequencing technology and a tailored-assembly algorithm to disentangle the two haploid genomes of a dikaryotic pathogenic wheat rust fungus. The two genomes display high levels of nucleotide and structural variations, which lead to allelic variation and the presence of genes lacking allelic counterparts. Nonallelic candidate effector genes, which likely encode important pathogenicity factors, display distinct genome localization patterns and are less likely to be evolutionary conserved than those which are present as allelic pairs. This genomic diversity may promote rapid host adaptation and/or be related to the age of the sequenced isolate since last meiosis.


Assuntos
Basidiomycota/genética , Variação Genética , Genoma Fúngico , Haplótipos , Basidiomycota/isolamento & purificação , Doenças das Plantas/microbiologia , Triticum/microbiologia , Fatores de Virulência/genética
20.
Front Plant Sci ; 9: 1882, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619431

RESUMO

Plant pathogens secrete effector molecules that suppress the plant immune response to facilitate disease development. AvrPto is a well-studied effector from the phytopathogenic bacterium Pseudomonas syringae. Here we utilize an in planta proximity dependent biotin ligase labeling technique (BioID) in combination with AvrPto to identify proximal proteins that are potential immune system components. The labeling technique biotinylated proteins proximal to AvrPto at the plasma-membrane allowing their isolation and identification by mass spectrometry. Five AvrPto proximal plant proteins (APPs) were identified and their effect on plant immune function and growth was examined in Nicotiana benthamiana leaves. One protein identified, RIN4, is a central immune component previously shown to interact with AvrPto. Two other proteins were identified which form a complex and when silenced significantly reduced P. syringae tabaci growth. The first was a receptor like protein kinase (APK1) which was required for Pto/Prf signaling and the second was Target of Myb1 (TOM1), a membrane associated protein with a phosphatidylinositol 5-phosphate (PtdIns5P) binding motif. We have developed a technology to rapidly determine protein interactions within living plant tissue. It is particularly useful for identifying plant immune system components by defining pathogenic effector protein interactions within their plant hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA