Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1339714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571951

RESUMO

The intricate balance of immune reactions towards invading pathogens and immune tolerance towards self is pivotal in preventing autoimmune diseases, with the thymus playing a central role in establishing and maintaining this equilibrium. The induction of central immune tolerance in the thymus involves the elimination of self-reactive T cells, a mechanism essential for averting autoimmunity. Disruption of the thymic T cell selection mechanisms can lead to the development of autoimmune diseases. In the dynamic microenvironment of the thymus, T cell migration and interactions with thymic stromal cells are critical for the selection processes that ensure self-tolerance. Thymic epithelial cells are particularly significant in this context, presenting self-antigens and inducing the negative selection of autoreactive T cells. Further, the synergistic roles of thymic fibroblasts, B cells, and dendritic cells in antigen presentation, selection and the development of regulatory T cells are pivotal in maintaining immune responses tightly regulated. This review article collates these insights, offering a comprehensive examination of the multifaceted role of thymic tissue homeostasis in the establishment of immune tolerance and its implications in the prevention of autoimmune diseases. Additionally, the developmental pathways of the thymus are explored, highlighting how genetic aberrations can disrupt thymic architecture and function, leading to autoimmune conditions. The impact of infections on immune tolerance is another critical area, with pathogens potentially triggering autoimmunity by altering thymic homeostasis. Overall, this review underscores the integral role of thymic tissue homeostasis in the prevention of autoimmune diseases, discussing insights into potential therapeutic strategies and examining putative avenues for future research on developing thymic-based therapies in treating and preventing autoimmune conditions.


Assuntos
Doenças Autoimunes , Timo , Humanos , Tolerância Imunológica , Doenças Autoimunes/prevenção & controle , Tolerância a Antígenos Próprios , Homeostase
2.
Viruses ; 15(3)2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36992490

RESUMO

Autoimmune diseases (AIDs) are the consequence of a breach in immune tolerance, leading to the inability to sufficiently differentiate between self and non-self. Immune reactions that are targeted towards self-antigens can ultimately lead to the destruction of the host's cells and the development of autoimmune diseases. Although autoimmune disorders are comparatively rare, the worldwide incidence and prevalence is increasing, and they have major adverse implications for mortality and morbidity. Genetic and environmental factors are thought to be the major factors contributing to the development of autoimmunity. Viral infections are one of the environmental triggers that can lead to autoimmunity. Current research suggests that several mechanisms, such as molecular mimicry, epitope spreading, and bystander activation, can cause viral-induced autoimmunity. Here we describe the latest insights into the pathomechanisms of viral-induced autoimmune diseases and discuss recent findings on COVID-19 infections and the development of AIDs.


Assuntos
Doenças Autoimunes , COVID-19 , Viroses , Humanos , COVID-19/complicações , Doenças Autoimunes/epidemiologia , Doenças Autoimunes/genética , Viroses/complicações , Viroses/epidemiologia , Autoimunidade , Autoantígenos
3.
Front Immunol ; 14: 1277365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38420512

RESUMO

Thymic epithelial cells are indispensable for T cell maturation and selection and the induction of central immune tolerance. The self-peptide repertoire expressed by medullary thymic epithelial cells is in part regulated by the transcriptional regulator Aire (Autoimmune regulator) and the transcription factor Fezf2. Due to the high complexity of mTEC maturation stages (i.e., post-Aire, Krt10+ mTECs, and Dclk1+ Tuft mTECs) and the heterogeneity in their gene expression profiles (i.e., mosaic expression patterns), it has been challenging to identify the additional factors complementing the transcriptional regulation. We aimed to identify the transcriptional regulators involved in the regulation of mTEC development and self-peptide expression in an unbiased and genome-wide manner. We used ATAC footprinting analysis as an indirect approach to identify transcription factors involved in the gene expression regulation in mTECs, which we validated by ChIP sequencing. This study identifies Fezf2 as a regulator of the recently described thymic Tuft cells (i.e., Tuft mTECs). Furthermore, we identify that transcriptional regulators of the ELF, ESE, ERF, and PEA3 subfamily of the ETS transcription factor family and members of the Krüppel-like family of transcription factors play a role in the transcriptional regulation of genes involved in late mTEC development and promiscuous gene expression.


Assuntos
Fatores de Transcrição , Células em Tufo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Células Epiteliais/metabolismo , Peptídeos/metabolismo
4.
Nat Commun ; 12(1): 6230, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711828

RESUMO

T cells undergo rigorous selection in the thymus to ensure self-tolerance and prevent autoimmunity, with this process requiring innocuous self-antigens (Ags) to be presented to thymocytes. Self-Ags are either expressed by thymic stroma cells or transported to the thymus from the periphery by migratory dendritic cells (DCs); meanwhile, small blood-borne peptides can access the thymic parenchyma by diffusing across the vascular lining. Here we describe an additional pathway of thymic Ag acquisition that enables circulating antigenic macromolecules to access both murine and human thymi. This pathway depends on a subset of thymus-resident DCs, distinct from both parenchymal and circulating migratory DCs, that are positioned in immediate proximity to thymic microvessels where they extend cellular processes across the endothelial barrier into the blood stream. Transendothelial positioning of DCs depends on DC-expressed CX3CR1 and its endothelial ligand, CX3CL1, and disrupting this chemokine pathway prevents thymic acquisition of circulating proteins and compromises negative selection of Ag-reactive thymocytes. Thus, transendothelial DCs represent a mechanism by which the thymus can actively acquire blood-borne Ags to induce and maintain central tolerance.


Assuntos
Sangue/imunologia , Células Dendríticas/imunologia , Células Endoteliais/imunologia , Timócitos/imunologia , Timo/imunologia , Animais , Autoantígenos/imunologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/imunologia , Diferenciação Celular , Movimento Celular , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/imunologia , Células Dendríticas/citologia , Células Endoteliais/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Tolerância a Antígenos Próprios , Timócitos/citologia , Timo/citologia
5.
Nature ; 559(7715): 627-631, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30022164

RESUMO

The thymus is responsible for generating a diverse yet self-tolerant pool of T cells1. Although the thymic medulla consists mostly of developing and mature AIRE+ epithelial cells, recent evidence has suggested that there is far greater heterogeneity among medullary thymic epithelial cells than was previously thought2. Here we describe in detail an epithelial subset that is remarkably similar to peripheral tuft cells that are found at mucosal barriers3. Similar to the periphery, thymic tuft cells express the canonical taste transduction pathway and IL-25. However, they are unique in their spatial association with cornified aggregates, ability to present antigens and expression of a broad diversity of taste receptors. Some thymic tuft cells pass through an Aire-expressing stage and depend on a known AIRE-binding partner, HIPK2, for their development. Notably, the taste chemosensory protein TRPM5 is required for their thymic function through which they support the development and polarization of thymic invariant natural killer T cells and act to establish a medullary microenvironment that is enriched in the type 2 cytokine, IL-4. These findings indicate that there is a compartmentalized medullary environment in which differentiation of a minor and highly specialized epithelial subset has a non-redundant role in shaping thymic function.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Interleucina-4/metabolismo , Timócitos/citologia , Timo/citologia , Timo/metabolismo , Animais , Microambiente Celular , Quinases Semelhantes a Duplacortina , Feminino , Humanos , Tolerância Imunológica/imunologia , Interleucina-4/biossíntese , Interleucinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Timócitos/metabolismo , Timo/anatomia & histologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Proteína AIRE
6.
J Autoimmun ; 67: 65-75, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26481130

RESUMO

Promiscuous expression of a plethora of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs) is essential for central tolerance. This promiscuous gene expression (pGE) is characterized by inclusion of a broad range of TRAs and by its mosaic expression patterns, i.e. each antigen is only expressed in 1-3% of mTECs. It is currently unclear to which extent random and/or deterministic mechanisms are involved in the regulation of pGE. In order to address this issue, we deconstructed the transcriptional heterogeneity in mTEC to minor subsets expressing a particular TRA. We identified six delineable co-expression groups in mouse mTECs. These co-expression groups displayed a variable degree of mutual overlap and mapped to different stages of mTEC development. Co-expressed genes showed chromosomal preference and clustered within delimited genomic regions. Moreover, co-expression groups in mice and humans selected by a pair of orthologous genes preferentially co-expressed sets of orthologous genes attesting to the species conservation of pGE between mouse and human. Furthermore, co-expressed genes were enriched for specific transcription factor binding motifs concomitant with up-regulation of the corresponding transcription factors, implicating additional factors in the regulation of pGE besides the Autoimmune Regulator (Aire). Thus promiscuous transcription of self-antigens in mTECs entails a highly coordinated process, which is evolutionary strictly conserved between species.


Assuntos
Autoantígenos/genética , Autoantígenos/imunologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Variação Genética , Timo/imunologia , Timo/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Análise por Conglomerados , Células Epiteliais/citologia , Evolução Molecular , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Motivos de Nucleotídeos , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Regiões Promotoras Genéticas , Ligação Proteica , Timo/citologia , Fatores de Transcrição/metabolismo , Ativação Transcricional
7.
Genom Data ; 6: 48-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26697330

RESUMO

The establishment of central tolerance essentially depends on the promiscuous gene expression (pGE) of a plethora of tissue restricted antigens by the medullary thymic epithelial cells. The antigens are presented to developing thymocytes in the thymus to select for non-self reactive T-cell receptors in order to prevent autoimmune reactions in the periphery. However the molecular regulation of tissue-restricted antigen expression is still poorly understood. The only regulator known to play a role in the transcriptional regulation so far is the autoimmune regulator (AIRE). AIRE is thought to act in a multi-protein complex, promoting transcription, elongation and splicing of target genes. Yet the full composition of this Aire-associated multi-protein complex and its mode of action remain to be elucidated. Here we describe the experimental details and controls of the gene array analysis on the impact of the homeodomain-interacting protein kinase 2 (Hipk2) on promiscuous gene expression in medullary thymic epithelial cells based on the analysis of newly generated TEC-specific Hipk2 conditional knockout mice. The changes in gene expression are presumably mediated through a regulatory effect of Hipk2 on AIRE as published in the study by Rattay and colleagues in the Journal of Immunology [1]. The gene array data reported in this paper have been deposited in the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. GSE63432).

8.
Nat Immunol ; 16(9): 933-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26237553

RESUMO

Expression of tissue-restricted self antigens (TRAs) in medullary thymic epithelial cells (mTECs) is essential for the induction of self-tolerance and prevents autoimmunity, with each TRA being expressed in only a few mTECs. How this process is regulated in single mTECs and is coordinated at the population level, such that the varied single-cell patterns add up to faithfully represent TRAs, is poorly understood. Here we used single-cell RNA sequencing and obtained evidence of numerous recurring TRA-co-expression patterns, each present in only a subset of mTECs. Co-expressed genes clustered in the genome and showed enhanced chromatin accessibility. Our findings characterize TRA expression in mTECs as a coordinated process that might involve local remodeling of chromatin and thus ensures a comprehensive representation of the immunological self.


Assuntos
Autoantígenos/genética , Células Epiteliais/imunologia , Regulação da Expressão Gênica/imunologia , RNA Mensageiro/metabolismo , Tolerância a Antígenos Próprios/imunologia , Timo/imunologia , Animais , Autoimunidade/imunologia , Montagem e Desmontagem da Cromatina , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Humanos , Camundongos , Tolerância a Antígenos Próprios/genética , Análise de Célula Única , Timo/citologia , Timo/metabolismo
9.
Front Immunol ; 6: 93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25784915

RESUMO

The induction of central tolerance in the course of T cell development crucially depends on promiscuous gene expression (pGE) in medullary thymic epithelial cells (mTECs). mTECs express a genome-wide variety of tissue-restricted antigens (TRAs), preventing the escape of autoreactive T cells to the periphery, and the development of severe autoimmunity. Most of our knowledge of how pGE is controlled comes from studies on the autoimmune regulator (Aire). Aire activates the expression of a large subset of TRAs by interacting with the general transcriptional machinery and promoting transcript elongation. However, further factors regulating Aire-independent TRAs must be at play. Recent studies demonstrated that pGE in general and the function of Aire in particular are controlled by epigenetic and post-transcriptional mechanisms. This mini-review summarizes current knowledge of the regulation of pGE by miRNA and epigenetic regulatory mechanisms such as DNA methylation, histone modifications, and chromosomal topology.

10.
J Immunol ; 194(3): 921-8, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25552543

RESUMO

Promiscuous expression of a plethora of tissue-restricted Ags (TRAs) by medullary thymic epithelial cells (mTECs) plays an essential role in T cell tolerance. Although the cellular mechanisms by which promiscuous gene expression (pGE) imposes T cell tolerance have been well characterized, the underlying molecular mechanisms remain poorly understood. The autoimmune regulator (AIRE) is to date the only validated molecule known to regulate pGE. AIRE is part of higher-order multiprotein complexes, which promote transcription, elongation, and splicing of a wide range of target genes. How AIRE and its partners mediate these various effects at the molecular level is still largely unclear. Using a yeast two-hybrid screen, we searched for novel AIRE-interacting proteins and identified the homeodomain-interacting protein kinase 2 (HIPK2) as a novel partner. HIPK2 partially colocalized with AIRE in nuclear bodies upon cotransfection and in human mTECs in situ. Moreover, HIPK2 phosphorylated AIRE in vitro and suppressed the coactivator activity of AIRE in a kinase-dependent manner. To evaluate the role of Hipk2 in modulating the function of AIRE in vivo, we compared whole-genome gene signatures of purified mTEC subsets from TEC-specific Hipk2 knockout mice with control mice and identified a small set of differentially expressed genes. Unexpectedly, most differentially expressed genes were confined to the CD80(lo) mTEC subset and preferentially included AIRE-independent TRAs. Thus, although it modulates gene expression in mTECs and in addition affects the size of the medullary compartment, TEC-specific HIPK2 deletion only mildly affects AIRE-directed pGE in vivo.


Assuntos
Proteínas de Transporte/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Timo/metabolismo , Animais , Antígenos/genética , Antígenos/imunologia , Antígenos/metabolismo , Autoimunidade , Proteínas de Transporte/genética , Núcleo Celular/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Ordem dos Genes , Marcação de Genes , Loci Gênicos , Humanos , Camundongos , Camundongos Knockout , Modelos Biológicos , Especificidade de Órgãos/genética , Fenótipo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Timo/imunologia , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteína AIRE
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA