Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 9(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202746

RESUMO

Bacteriophage T7 and T7-like bacteriophages are valuable genetic models for lytic phage biology that have heretofore been intractable with in vivo genetic engineering methods. This manuscript describes that the presence of λ Red recombination proteins makes in vivo recombineering of T7 possible, so that single base changes and whole gene replacements on the T7 genome can be made. Red recombination functions also increase the efficiency of T7 genome DNA transfection of cells by ~100-fold. Likewise, Red function enables two other T7-like bacteriophages that do not normally propagate in E. coli to be recovered following genome transfection. These results constitute major technical advances in the speed and efficiency of bacteriophage T7 engineering and will aid in the rapid development of new phage variants for a variety of applications.

2.
Genetics ; 206(1): 179-187, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28341651

RESUMO

We made a coupled genetic reporter that detects rare transcription misincorporation errors to measure RNA polymerase transcription fidelity in Escherichia coli Using this reporter, we demonstrated in vivo that the transcript cleavage factor GreA, but not GreB, is essential for proofreading of a transcription error where a riboA has been misincorporated instead of a riboG. A greA mutant strain had more than a 100-fold increase in transcription errors relative to wild-type or a greB mutant. However, overexpression of GreB in ΔgreA cells reduced the misincorporation errors to wild-type levels, demonstrating that GreB at high concentration could substitute for GreA in RNA proofreading activity in vivo.


Assuntos
Proteínas de Escherichia coli/genética , Genes Reporter/genética , Fatores de Transcrição/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Alongamento de Peptídeos , Regiões Promotoras Genéticas , RNA/biossíntese , RNA/genética
3.
PLoS Genet ; 11(1): e1004910, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569256

RESUMO

Mutations accumulate during all stages of growth, but only germ line mutations contribute to evolution. While meiosis contributes to evolution by reassortment of parental alleles, we show here that the process itself is inherently mutagenic. We have previously shown that the DNA synthesis associated with repair of a double-strand break is about 1000-fold less accurate than S-phase synthesis. Since the process of meiosis involves many programmed DSBs, we reasoned that this repair might also be mutagenic. Indeed, in the early 1960's Magni and Von Borstel observed elevated reversion of recessive alleles during meiosis, and found that the revertants were more likely to be associated with a crossover than non-revertants, a process that they called "the meiotic effect." Here we use a forward mutation reporter (CAN1 HIS3) placed at either a meiotic recombination coldspot or hotspot near the MAT locus on Chromosome III. We find that the increased mutation rate at CAN1 (6 to 21 -fold) correlates with the underlying recombination rate at the locus. Importantly, we show that the elevated mutation rate is fully dependent upon Spo11, the protein that introduces the meiosis specific DSBs. To examine associated recombination we selected for random spores with or without a mutation in CAN1. We find that the mutations isolated this way show an increased association with recombination (crossovers, loss of crossover interference and/or increased gene conversion tracts). Polζ appears to contribute about half of the mutations induced during meiosis, but is not the only source of mutations for the meiotic effect. We see no difference in either the spectrum or distribution of mutations between mitosis and meiosis. The correlation of hotspots with elevated mutagenesis provides a mechanism for organisms to control evolution rates in a gene specific manner.


Assuntos
Meiose/genética , Mitose/genética , Taxa de Mutação , Recombinação Genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Cromossomos/metabolismo , Reparo do DNA/genética , Endodesoxirribonucleases/genética , Conversão Gênica/genética , Proteínas de Homeodomínio/genética , Mutação , Proteínas Repressoras/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
4.
BMC Genomics ; 15: 394, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24885769

RESUMO

BACKGROUND: Closely spaced long inverted repeats, also known as DNA palindromes, can undergo intrastrand annealing to form DNA hairpins. The ability to form these hairpins results in genome instability, difficulties in maintaining clones in Escherichia coli and major problems for most DNA sequencing approaches. Because of their role in genomic instability and gene amplification in some human cancers, it is important to develop systematic approaches to detect and characterize DNA palindromes. RESULTS: We developed a new protocol to identify palindromes that couples the S1 nuclease treated Cot0 DNA (GAPF) with high-throughput sequencing (GAP-Seq). Unlike earlier protocols, it does not involve restriction enzymatic digestion prior to DNA snap-back thereby preserving longer DNA sequences. It also indicates the location of the novel junction, which can then be recovered. Using MCF-7 breast cancer cell line as the proof-of-principle analysis, we have identified 35 palindrome candidates and physically characterized the top 5 candidates and their junctions. Because this protocol eliminates many of the false positives that plague earlier techniques, we have improved palindrome identification. CONCLUSIONS: The GAP-Seq approach underscores the importance of developing new tools for identifying and characterizing palindromes, and provides a new strategy to systematically assess palindromes in genomes. It will be useful for studying human cancers and other diseases associated with palindromes.


Assuntos
DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional , Humanos , Células MCF-7 , Reação em Cadeia da Polimerase
5.
Mol Cell ; 28(4): 638-51, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18042458

RESUMO

Mre11/Rad50 complexes in all organisms function in the repair of DNA double-strand breaks. In budding yeast, genetic evidence suggests that the Sae2 protein is essential for the processing of hairpin DNA intermediates and meiotic double-strand breaks by Mre11/Rad50 complexes, but the biochemical basis of this functional relationship is not known. Here we demonstrate that recombinant Sae2 binds DNA and exhibits endonuclease activity on single-stranded DNA independently of Mre11/Rad50 complexes, but hairpin DNA structures are cleaved cooperatively in the presence of Mre11/Rad50 or Mre11/Rad50/Xrs2. Hairpin structures are not processed at the tip by Sae2 but rather at single-stranded DNA regions adjacent to the hairpin. Truncation and missense mutants of Sae2 inactivate this endonuclease activity in vitro and fail to complement Deltasae2 strains in vivo for meiosis and recombination involving hairpin intermediates, suggesting that the catalytic activities of Sae2 are important for its biological functions.


Assuntos
DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Conformação de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , DNA Fúngico/química , DNA de Cadeia Simples/metabolismo , Endonucleases/metabolismo , Proteínas Mutantes/metabolismo , Fenótipo , Ligação Proteica , Proteínas Recombinantes/metabolismo
6.
Front Biosci ; 12: 4208-20, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17485368

RESUMO

Chromosomes of many eukaryotic organisms including humans contain a large number of repetitive sequences. Several types of commonly present DNA repeats have the capacity to adopt hairpin and cruciform secondary structures. Inverted repeats, AT- and GC-rich micro- and minisatellites, comprising this class of sequence motifs, are frequently found in chromosomal regions that are prone for gross rearrangements in somatic and germ cells. Recent studies in yeast and mammals indicate that a double-strand break occurring at the sites of unstable repeats can be an initial event in the generation of chromosome rearrangements. The repeat-induced chromosomal instability is responsible for a number of human diseases and has been implicated in carcinogenesis. In this review, we discuss the molecular mechanisms by which hairpins and cruciforms can trigger chromosomal fragility and subsequent aberrations in eukaryotic cells. We also address the relationship between secondary structure-mediated genetic instability and human pathology.


Assuntos
Aberrações Cromossômicas , Conformação de Ácido Nucleico , Instabilidade Genômica , Humanos
7.
Mol Cell ; 20(5): 658-9, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16337590

RESUMO

Two new studies provide in vivo ( [this issue of Molecular Cell]) and in vitro ( [this issue of Molecular Cell]) evidence that poleta functions to extend 3' strands exchanged during homologous recombination and raise the issue of how TLS polymerases are selected onto different substrates.


Assuntos
DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Recombinação Genética , Animais , DNA/genética , Reparo do DNA , Humanos , Modelos Genéticos , Rad51 Recombinase/metabolismo , Homologia de Sequência do Ácido Nucleico
8.
Nucleic Acids Res ; 33(22): e186, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16340004

RESUMO

The nature of any long palindrome that might exist in the human genome is obscured by the instability of such sequences once cloned in Escherichia coli. We describe and validate a practical alternative to the analysis of naturally-occurring palindromes based upon cloning and propagation in Saccharomyces cerevisiae. With this approach we have investigated an intronic sequence in the human Neurofibromatosis 1 (NF1) locus that is represented by multiple conflicting versions in GenBank. We find that the site is highly polymorphic, exhibiting different degrees of palindromy in different individuals. A side-by-side comparison of the same plasmids in E.coli versus. S.cerevisiae demonstrated that the more palindromic alleles were inevitably corrupted upon cloning in E.coli, but could be propagated intact in yeast. The high quality sequence obtained from the yeast-based approach provides insight into the various mechanisms that destabilize a palindrome in E.coli, yeast and humans, into the diversification of a highly polymorphic site within the NF1 locus during primate evolution, and into the association between palindromy and chromosomal translocation.


Assuntos
Genes da Neurofibromatose 1 , Genoma Humano , Genômica/métodos , Íntrons , Polimorfismo Genético , Sequências Repetitivas de Ácido Nucleico , Alelos , Artefatos , Sequência de Bases , Clonagem Molecular , Escherichia coli/genética , Evolução Molecular , Humanos , Dados de Sequência Molecular , Plasmídeos , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Deleção de Sequência
9.
Genes Dev ; 19(11): 1390-9, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15937224

RESUMO

Selective gene amplification is associated with normal development, neoplasia, and drug resistance. One class of amplification events results in large arrays of inverted repeats that are often complex in structure, thus providing little information about their genesis. We made a recombination substrate in Saccharomyces cerevisiae that frequently generates palindromic duplications to repair a site-specific double-strand break in strains deleted for the SAE2 gene. The resulting palindromes are stable in sae2Delta cells, but unstable in wild-type cells. We previously proposed that the palindromes are formed by invasion and break-induced replication, followed by an unknown end joining mechanism. Here we demonstrate that palindrome formation can occur in the absence of RAD50, YKU70, and LIG4, indicating that palindrome formation defines a new class of nonhomologous end joining events. Sequence data from 24 independent palindromic duplication junctions suggest that the duplication mechanism utilizes extremely short (4-6 bp), closely spaced (2-9 bp), inverted repeats to prime DNA synthesis via an intramolecular foldback of a 3' end. In view of our data, we present a foldback priming model for how a single copy sequence is duplicated to generate a palindrome.


Assuntos
Amplificação de Genes , Genes Fúngicos , Saccharomyces cerevisiae/genética , Sequência de Bases , Southern Blotting , DNA Fúngico , Dados de Sequência Molecular
10.
Nucleic Acids Res ; 32(19): e155, 2004 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-15534362

RESUMO

DNA sequences containing long adjacent inverted repeats (palindromes) are inherently unstable and are associated with many types of chromosomal rearrangements. The instability associated with palindromic sequences also creates difficulties in their molecular analysis: long palindromes (>250 bp/arm) are highly unstable in Escherichia coli, and cannot be directly PCR amplified or sequenced due to their propensity to form intra-strand hairpins. Here, we show that DNA molecules containing long palindromes (>900 bp/arm) can be transformed and stably maintained in Saccharomyces cerevisiae cells lacking a functional SAE2 gene. Treatment of the palindrome-containing DNA with sodium bisulfite at high temperature results in deamination of cytosine, converting it to uracil and thus reducing the propensity to form intra-strand hairpins. The bisulfite-treated DNA can then be PCR amplified, cloned and sequenced, allowing determination of the nucleotide sequence of the junctions. Our data demonstrates that long palindromes with either no spacer (perfect) or a 2 bp spacer can be stably maintained, recovered and sequenced from sae2Delta yeast cells. Since DNA sequences from mammalian cells can be gap repaired by their co-transformation into yeast cells with an appropriate vector, the methods described in this manuscript should provide some of the necessary tools to isolate and characterize palindromic junctions from mammalian cells.


Assuntos
Clonagem Molecular/métodos , DNA/química , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/métodos , Sequência de Bases , Endonucleases , Dados de Sequência Molecular , Plasmídeos/química , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Sulfitos/química
11.
Virology ; 319(2): 185-9, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14980479

RESUMO

We demonstrate that the bacteriophage lambda Red functions efficiently recombine linear DNA or single-strand oligonucleotides (ss-oligos) into bacteriophage lambda to create specific changes in the viral genome. Point mutations, deletions, and gene replacements have been created. While recombineering with oligonucleotides, we encountered other mutations accompanying the desired point mutational change. DNA sequence analysis suggests that these unwanted mutations are mainly frameshift deletions introduced during oligonucleotide synthesis.


Assuntos
Bacteriófago lambda/genética , Oligonucleotídeos/genética , Sequência de Bases , Deleção de Genes , Engenharia Genética/métodos , Dados de Sequência Molecular , Mutação Puntual , Recombinação Genética
12.
Annu Rev Genet ; 37: 31-66, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14616055

RESUMO

Cells have high-fidelity polymerases whose task is to accurately replicate the genome, and low-fidelity polymerases with specialized functions. Although some of these low-fidelity polymerases are exceptional in their ability to replicate damaged DNA and restore the undamaged sequence, they are error prone on undamaged DNA. In fact, these error-prone polymerases are sometimes used in circumstances where the capacity to make errors has a selective advantage. The mutagenic potential of the error-prone polymerases requires that their expression, activity, and access to undamaged DNA templates be regulated. Here we review these specialized polymerases with an emphasis on their biological roles.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Mutação , Escherichia coli/genética , Escherichia coli/metabolismo , Células Eucarióticas/metabolismo
13.
Genetics ; 162(3): 1063-77, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12454056

RESUMO

The DNA synthesis associated with recombinational repair of chromosomal double-strand breaks (DSBs) has a lower fidelity than normal replicative DNA synthesis. Here, we use an inverted-repeat substrate to monitor the fidelity of repair of a site-specific DSB. DSB induction made by the HO endonuclease stimulates recombination >5000-fold and is associated with a >1000-fold increase in mutagenesis of an adjacent gene. We demonstrate that most break-repair-induced mutations (BRIMs) are point mutations and have a higher proportion of frameshifts than do spontaneous mutations of the same substrate. Although the REV3 translesion DNA polymerase is not required for recombination, it introduces approximately 75% of the BRIMs and approximately 90% of the base substitution mutations. Recombinational repair of the DSB is strongly dependent upon genes of the RAD52 epistasis group; however, the residual recombinants present in rad57 mutants are associated with a 5- to 20-fold increase in BRIMs. The spectrum of mutations in rad57 mutants is similar to that seen in the wild-type strain and is similarly affected by REV3. We also find that REV3 is required for the repair of MMS-induced lesions when recombinational repair is compromised. Our data suggest that Rad55p/Rad57p help limit the generation of substrates that require pol zeta during recombination.


Assuntos
DNA Polimerase Dirigida por DNA/fisiologia , Proteínas Fúngicas/fisiologia , Mutação/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases , Southern Blotting , Reparo do DNA/fisiologia , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA/fisiologia , Mutação Puntual , Rad51 Recombinase , Proteína Rad52 de Recombinação e Reparo de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA