RESUMO
Bacteriophage T7 and T7-like bacteriophages are valuable genetic models for lytic phage biology that have heretofore been intractable with in vivo genetic engineering methods. This manuscript describes that the presence of λ Red recombination proteins makes in vivo recombineering of T7 possible, so that single base changes and whole gene replacements on the T7 genome can be made. Red recombination functions also increase the efficiency of T7 genome DNA transfection of cells by ~100-fold. Likewise, Red function enables two other T7-like bacteriophages that do not normally propagate in E. coli to be recovered following genome transfection. These results constitute major technical advances in the speed and efficiency of bacteriophage T7 engineering and will aid in the rapid development of new phage variants for a variety of applications.
RESUMO
We made a coupled genetic reporter that detects rare transcription misincorporation errors to measure RNA polymerase transcription fidelity in Escherichia coli Using this reporter, we demonstrated in vivo that the transcript cleavage factor GreA, but not GreB, is essential for proofreading of a transcription error where a riboA has been misincorporated instead of a riboG. A greA mutant strain had more than a 100-fold increase in transcription errors relative to wild-type or a greB mutant. However, overexpression of GreB in ΔgreA cells reduced the misincorporation errors to wild-type levels, demonstrating that GreB at high concentration could substitute for GreA in RNA proofreading activity in vivo.
Assuntos
Proteínas de Escherichia coli/genética , Genes Reporter/genética , Fatores de Transcrição/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Alongamento de Peptídeos , Regiões Promotoras Genéticas , RNA/biossíntese , RNA/genéticaRESUMO
Mre11/Rad50 complexes in all organisms function in the repair of DNA double-strand breaks. In budding yeast, genetic evidence suggests that the Sae2 protein is essential for the processing of hairpin DNA intermediates and meiotic double-strand breaks by Mre11/Rad50 complexes, but the biochemical basis of this functional relationship is not known. Here we demonstrate that recombinant Sae2 binds DNA and exhibits endonuclease activity on single-stranded DNA independently of Mre11/Rad50 complexes, but hairpin DNA structures are cleaved cooperatively in the presence of Mre11/Rad50 or Mre11/Rad50/Xrs2. Hairpin structures are not processed at the tip by Sae2 but rather at single-stranded DNA regions adjacent to the hairpin. Truncation and missense mutants of Sae2 inactivate this endonuclease activity in vitro and fail to complement Deltasae2 strains in vivo for meiosis and recombination involving hairpin intermediates, suggesting that the catalytic activities of Sae2 are important for its biological functions.
Assuntos
DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Conformação de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , DNA Fúngico/química , DNA de Cadeia Simples/metabolismo , Endonucleases/metabolismo , Proteínas Mutantes/metabolismo , Fenótipo , Ligação Proteica , Proteínas Recombinantes/metabolismoRESUMO
Two new studies provide in vivo ( [this issue of Molecular Cell]) and in vitro ( [this issue of Molecular Cell]) evidence that poleta functions to extend 3' strands exchanged during homologous recombination and raise the issue of how TLS polymerases are selected onto different substrates.
Assuntos
DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Recombinação Genética , Animais , DNA/genética , Reparo do DNA , Humanos , Modelos Genéticos , Rad51 Recombinase/metabolismo , Homologia de Sequência do Ácido NucleicoRESUMO
The nature of any long palindrome that might exist in the human genome is obscured by the instability of such sequences once cloned in Escherichia coli. We describe and validate a practical alternative to the analysis of naturally-occurring palindromes based upon cloning and propagation in Saccharomyces cerevisiae. With this approach we have investigated an intronic sequence in the human Neurofibromatosis 1 (NF1) locus that is represented by multiple conflicting versions in GenBank. We find that the site is highly polymorphic, exhibiting different degrees of palindromy in different individuals. A side-by-side comparison of the same plasmids in E.coli versus. S.cerevisiae demonstrated that the more palindromic alleles were inevitably corrupted upon cloning in E.coli, but could be propagated intact in yeast. The high quality sequence obtained from the yeast-based approach provides insight into the various mechanisms that destabilize a palindrome in E.coli, yeast and humans, into the diversification of a highly polymorphic site within the NF1 locus during primate evolution, and into the association between palindromy and chromosomal translocation.
Assuntos
Genes da Neurofibromatose 1 , Genoma Humano , Genômica/métodos , Íntrons , Polimorfismo Genético , Sequências Repetitivas de Ácido Nucleico , Alelos , Artefatos , Sequência de Bases , Clonagem Molecular , Escherichia coli/genética , Evolução Molecular , Humanos , Dados de Sequência Molecular , Plasmídeos , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Deleção de SequênciaRESUMO
Selective gene amplification is associated with normal development, neoplasia, and drug resistance. One class of amplification events results in large arrays of inverted repeats that are often complex in structure, thus providing little information about their genesis. We made a recombination substrate in Saccharomyces cerevisiae that frequently generates palindromic duplications to repair a site-specific double-strand break in strains deleted for the SAE2 gene. The resulting palindromes are stable in sae2Delta cells, but unstable in wild-type cells. We previously proposed that the palindromes are formed by invasion and break-induced replication, followed by an unknown end joining mechanism. Here we demonstrate that palindrome formation can occur in the absence of RAD50, YKU70, and LIG4, indicating that palindrome formation defines a new class of nonhomologous end joining events. Sequence data from 24 independent palindromic duplication junctions suggest that the duplication mechanism utilizes extremely short (4-6 bp), closely spaced (2-9 bp), inverted repeats to prime DNA synthesis via an intramolecular foldback of a 3' end. In view of our data, we present a foldback priming model for how a single copy sequence is duplicated to generate a palindrome.
Assuntos
Amplificação de Genes , Genes Fúngicos , Saccharomyces cerevisiae/genética , Sequência de Bases , Southern Blotting , DNA Fúngico , Dados de Sequência MolecularRESUMO
DNA sequences containing long adjacent inverted repeats (palindromes) are inherently unstable and are associated with many types of chromosomal rearrangements. The instability associated with palindromic sequences also creates difficulties in their molecular analysis: long palindromes (>250 bp/arm) are highly unstable in Escherichia coli, and cannot be directly PCR amplified or sequenced due to their propensity to form intra-strand hairpins. Here, we show that DNA molecules containing long palindromes (>900 bp/arm) can be transformed and stably maintained in Saccharomyces cerevisiae cells lacking a functional SAE2 gene. Treatment of the palindrome-containing DNA with sodium bisulfite at high temperature results in deamination of cytosine, converting it to uracil and thus reducing the propensity to form intra-strand hairpins. The bisulfite-treated DNA can then be PCR amplified, cloned and sequenced, allowing determination of the nucleotide sequence of the junctions. Our data demonstrates that long palindromes with either no spacer (perfect) or a 2 bp spacer can be stably maintained, recovered and sequenced from sae2Delta yeast cells. Since DNA sequences from mammalian cells can be gap repaired by their co-transformation into yeast cells with an appropriate vector, the methods described in this manuscript should provide some of the necessary tools to isolate and characterize palindromic junctions from mammalian cells.
Assuntos
Clonagem Molecular/métodos , DNA/química , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/métodos , Sequência de Bases , Endonucleases , Dados de Sequência Molecular , Plasmídeos/química , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Sulfitos/químicaRESUMO
We demonstrate that the bacteriophage lambda Red functions efficiently recombine linear DNA or single-strand oligonucleotides (ss-oligos) into bacteriophage lambda to create specific changes in the viral genome. Point mutations, deletions, and gene replacements have been created. While recombineering with oligonucleotides, we encountered other mutations accompanying the desired point mutational change. DNA sequence analysis suggests that these unwanted mutations are mainly frameshift deletions introduced during oligonucleotide synthesis.
Assuntos
Bacteriófago lambda/genética , Oligonucleotídeos/genética , Sequência de Bases , Deleção de Genes , Engenharia Genética/métodos , Dados de Sequência Molecular , Mutação Puntual , Recombinação GenéticaRESUMO
Cells have high-fidelity polymerases whose task is to accurately replicate the genome, and low-fidelity polymerases with specialized functions. Although some of these low-fidelity polymerases are exceptional in their ability to replicate damaged DNA and restore the undamaged sequence, they are error prone on undamaged DNA. In fact, these error-prone polymerases are sometimes used in circumstances where the capacity to make errors has a selective advantage. The mutagenic potential of the error-prone polymerases requires that their expression, activity, and access to undamaged DNA templates be regulated. Here we review these specialized polymerases with an emphasis on their biological roles.
Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Mutação , Escherichia coli/genética , Escherichia coli/metabolismo , Células Eucarióticas/metabolismoRESUMO
The DNA synthesis associated with recombinational repair of chromosomal double-strand breaks (DSBs) has a lower fidelity than normal replicative DNA synthesis. Here, we use an inverted-repeat substrate to monitor the fidelity of repair of a site-specific DSB. DSB induction made by the HO endonuclease stimulates recombination >5000-fold and is associated with a >1000-fold increase in mutagenesis of an adjacent gene. We demonstrate that most break-repair-induced mutations (BRIMs) are point mutations and have a higher proportion of frameshifts than do spontaneous mutations of the same substrate. Although the REV3 translesion DNA polymerase is not required for recombination, it introduces approximately 75% of the BRIMs and approximately 90% of the base substitution mutations. Recombinational repair of the DSB is strongly dependent upon genes of the RAD52 epistasis group; however, the residual recombinants present in rad57 mutants are associated with a 5- to 20-fold increase in BRIMs. The spectrum of mutations in rad57 mutants is similar to that seen in the wild-type strain and is similarly affected by REV3. We also find that REV3 is required for the repair of MMS-induced lesions when recombinational repair is compromised. Our data suggest that Rad55p/Rad57p help limit the generation of substrates that require pol zeta during recombination.