Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Nat Cardiovasc Res ; 3(4): 441-459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765203

RESUMO

Tuning of genome structure and function is accomplished by chromatin-binding proteins, which determine the transcriptome and phenotype of the cell. Here we investigate how communication between extracellular stress and chromatin structure may regulate cellular mechanical behaviors. We demonstrate that histone H1.0, which compacts nucleosomes into higher-order chromatin fibers, controls genome organization and cellular stress response. We show that histone H1.0 has privileged expression in fibroblasts across tissue types and that its expression is necessary and sufficient to induce myofibroblast activation. Depletion of histone H1.0 prevents cytokine-induced fibroblast contraction, proliferation and migration via inhibition of a transcriptome comprising extracellular matrix, cytoskeletal and contractile genes, through a process that involves locus-specific H3K27 acetylation. Transient depletion of histone H1.0 in vivo prevents fibrosis in cardiac muscle. These findings identify an unexpected role of linker histones to orchestrate cellular mechanical behaviors, directly coupling force generation, nuclear organization and gene transcription.

3.
BMC Biol ; 22(1): 67, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504308

RESUMO

BACKGROUND: Insects have evolved complex visual systems and display an astonishing range of adaptations for diverse ecological niches. Species of Drosophila melanogaster subgroup exhibit extensive intra- and interspecific differences in compound eye size. These differences provide an excellent opportunity to better understand variation in insect eye structure and the impact on vision. Here we further explored the difference in eye size between D. mauritiana and its sibling species D. simulans. RESULTS: We confirmed that D. mauritiana have rapidly evolved larger eyes as a result of more and wider ommatidia than D. simulans since they recently diverged approximately 240,000 years ago. The functional impact of eye size, and specifically ommatidia size, is often only estimated based on the rigid surface morphology of the compound eye. Therefore, we used 3D synchrotron radiation tomography to measure optical parameters in 3D, predict optical capacity, and compare the modelled vision to in vivo optomotor responses. Our optical models predicted higher contrast sensitivity for D. mauritiana, which we verified by presenting sinusoidal gratings to tethered flies in a flight arena. Similarly, we confirmed the higher spatial acuity predicted for Drosophila simulans with smaller ommatidia and found evidence for higher temporal resolution. CONCLUSIONS: Our study demonstrates that even subtle differences in ommatidia size between closely related Drosophila species can impact the vision of these insects. Therefore, further comparative studies of intra- and interspecific variation in eye morphology and the consequences for vision among other Drosophila species, other dipterans and other insects are needed to better understand compound eye structure-function and how the diversification of eye size, shape, and function has helped insects to adapt to the vast range of ecological niches.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/fisiologia , Drosophila melanogaster/genética , Olho/anatomia & histologia , Especificidade da Espécie
4.
Chem Biomed Imaging ; 2(3): 213-221, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38551010

RESUMO

High-resolution spatial and temporal analysis and 3D visualization of time-dependent processes, such as human dental enamel acid demineralization, often present a challenging task. Overcoming this challenge often requires the development of special methods. Dental caries remains one of the most important oral diseases that involves the demineralization of hard dental tissues as a consequence of acid production by oral bacteria. Enamel has a hierarchically organized architecture that extends down to the nanostructural level and requires high resolution to study its evolution in detail. Enamel demineralization is a dynamic process that is best investigated with the help of in situ experiments. In previous studies, synchrotron tomography was applied to study the 3D enamel structure at certain time points (time-lapse tomography). Here, another distinct approach to time-evolving tomography studies is presented, whereby the sample image is reconstructed as it undergoes continuous rotation over a virtually unlimited angular range. The resulting (single) data set contains the data for multiple (potentially overlapping) intermediate tomograms that can be extracted and analyzed as desired using time-stepping selection of data subsets from the continuous fly-scan recording. One of the advantages of this approach is that it reduces the amount of time required to collect an equivalent number of single tomograms. Another advantage is that the nominal time step between successive reconstructions can be significantly reduced. We applied this approach to the study of acidic enamel demineralization and observed the progression of demineralization over time steps significantly smaller than the total acquisition time of a single tomogram, with a voxel size smaller than 0.5 µm. It is expected that the approach presented in this paper can be useful for high-resolution studies of other dynamic processes and for assessing small structural modifications in evolving hierarchical materials.

5.
Sci Rep ; 14(1): 5139, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429500

RESUMO

We apply X-ray ptycho-tomography to perform high-resolution, non-destructive, three-dimensional (3D) imaging of Fe-rich inclusions in paleomagnetically relevant materials (zircon single crystals from the Bishop Tuff ignimbrite). Correlative imaging using quantum diamond magnetic microscopy combined with X-ray fluorescence mapping was used to locate regions containing potential ferromagnetic remanence carriers. Ptycho-tomographic reconstructions with voxel sizes 85 nm and 21 nm were achievable across a field-of-view > 80 µm; voxel sizes as small as 5 nm were achievable over a limited field-of-view using local ptycho-tomography. Fe-rich inclusions 300 nm in size were clearly resolved. We estimate that particles as small as 100 nm-approaching single-domain threshold for magnetite-could be resolvable using this "dual-mode" methodology. Fe-rich inclusions (likely magnetite) are closely associated with apatite inclusions that have no visible connection to the exterior surface of the zircon (e.g., via intersecting cracks). There is no evidence of radiation damage, alteration, recrystallisation or deformation in the host zircon or apatite that could provide alternative pathways for Fe infiltration, indicating that magnetite and apatite grew separately as primary phases in the magma, that magnetite adhered to the surfaces of the apatite, and that the magnetite-coated apatite was then encapsulated as primary inclusions within the growing zircon. Rarer examples of Fe-rich inclusions entirely encapsulated by zircon are also observed. These observations support the presence of primary inclusions in relatively young and pristine zircon crystals. Combining magnetic and tomography results we deduce the presence of magnetic carriers that are in the optimal size range for carrying strong and stable paleomagnetic signals but that remain below the detection limits of even the highest-resolution X-ray tomography reconstructions. We recommend the use of focused ion beam nanotomography and/or correlative transmission electron microscopy to directly confirm the presence of primary magnetite in the sub 300 nm range as a necessary step in targeted paleomagnetic workflows.

7.
Magn Reson Med ; 90(5): 2144-2157, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37345727

RESUMO

PURPOSE: This paper presents a hierarchical modeling approach for estimating cardiomyocyte major and minor diameters and intracellular volume fraction (ICV) using diffusion-weighted MRI (DWI) data in ex vivo mouse hearts. METHODS: DWI data were acquired on two healthy controls and two hearts 3 weeks post transverse aortic constriction (TAC) using a bespoke diffusion scheme with multiple diffusion times ( Δ $$ \Delta $$ ), q-shells and diffusion encoding directions. Firstly, a bi-exponential tensor model was fitted separately at each diffusion time to disentangle the dependence on diffusion times from diffusion weightings, that is, b-values. The slow-diffusing component was attributed to the restricted diffusion inside cardiomyocytes. ICV was then extrapolated at Δ = 0 $$ \Delta =0 $$ using linear regression. Secondly, given the secondary and the tertiary diffusion eigenvalue measurements for the slow-diffusing component obtained at different diffusion times, major and minor diameters were estimated assuming a cylinder model with an elliptical cross-section (ECS). High-resolution three-dimensional synchrotron X-ray imaging (SRI) data from the same specimen was utilized to evaluate the biophysical parameters. RESULTS: Estimated parameters using DWI data were (control 1/control 2 vs. TAC 1/TAC 2): major diameter-17.4 µ $$ \mu $$ m/18.0 µ $$ \mu $$ m versus 19.2 µ $$ \mu $$ m/19.0 µ $$ \mu $$ m; minor diameter-10.2 µ $$ \mu $$ m/9.4 µ $$ \mu $$ m versus 12.8 µ $$ \mu $$ m/13.4 µ $$ \mu $$ m; and ICV-62%/62% versus 68%/47%. These findings were consistent with SRI measurements. CONCLUSION: The proposed method allowed for accurate estimation of biophysical parameters suggesting cardiomyocyte diameters as sensitive biomarkers of hypertrophy in the heart.


Assuntos
Estenose da Valva Aórtica , Miócitos Cardíacos , Camundongos , Animais , Imagem de Difusão por Ressonância Magnética/métodos , Cardiomegalia/diagnóstico por imagem , Imageamento Tridimensional
8.
Development ; 150(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912240

RESUMO

Somatic polyploidization, an adaptation by which cells increase their DNA content to support growth, is observed in many cell types, including cardiomyocytes. Although polyploidization is believed to be beneficial, progression to a polyploid state is often accompanied by loss of proliferative capacity. Recent work suggests that genetics heavily influence cardiomyocyte ploidy. However, the developmental course by which cardiomyocytes reach their final ploidy state has only been investigated in select backgrounds. Here, we assessed cardiomyocyte number, cell cycle activity, and ploidy dynamics across two divergent mouse strains: C57BL/6J and A/J. Both strains are born and reach adulthood with comparable numbers of cardiomyocytes; however, the end composition of ploidy classes and developmental progression to reach the final state differ substantially. We expand on previous findings that identified Tnni3k as a mediator of cardiomyocyte ploidy and uncover a role for Runx1 in ploidy dynamics and cardiomyocyte cell division, in both developmental and injury contexts. These data provide novel insights into the developmental path to cardiomyocyte polyploidization and challenge the paradigm that hypertrophy is the sole mechanism for growth in the postnatal heart.


Assuntos
Miócitos Cardíacos , Ploidias , Animais , Camundongos , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL , Poliploidia , Patrimônio Genético , Proteínas Serina-Treonina Quinases/metabolismo
10.
Acta Pharmacol Sin ; 44(7): 1380-1390, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36991098

RESUMO

Parallel to major changes in fatty acid and glucose metabolism, defect in branched-chain amino acid (BCAA) catabolism has also been recognized as a metabolic hallmark and potential therapeutic target for heart failure. However, BCAA catabolic enzymes are ubiquitously expressed in all cell types and a systemic BCAA catabolic defect is also manifested in metabolic disorder associated with obesity and diabetes. Therefore, it remains to be determined the cell-autonomous impact of BCAA catabolic defect in cardiomyocytes in intact hearts independent from its potential global effects. In this study, we developed two mouse models. One is cardiomyocyte and temporal-specific inactivation of the E1α subunit (BCKDHA-cKO) of the branched-chain α-ketoacid dehydrogenase (BCKDH) complex, which blocks BCAA catabolism. Another model is cardiomyocyte specific inactivation of the BCKDH kinase (BCKDK-cKO), which promotes BCAA catabolism by constitutively activating BCKDH activity in adult cardiomyocytes. Functional and molecular characterizations showed E1α inactivation in cardiomyocytes was sufficient to induce loss of cardiac function, systolic chamber dilation and pathological transcriptome reprogramming. On the other hand, inactivation of BCKDK in intact heart does not have an impact on baseline cardiac function or cardiac dysfunction under pressure overload. Our results for the first time established the cardiomyocyte cell autonomous role of BCAA catabolism in cardiac physiology. These mouse lines will serve as valuable model systems to investigate the underlying mechanisms of BCAA catabolic defect induced heart failure and to provide potential insights for BCAA targeted therapy.


Assuntos
Diabetes Mellitus , Insuficiência Cardíaca , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Obesidade/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Aminoácidos de Cadeia Ramificada/uso terapêutico
11.
Front Cardiovasc Med ; 10: 1226586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188257

RESUMO

Cardiometabolic disorders encompass a broad range of cardiovascular complications associated with metabolic dysfunction. These conditions have an increasing share in the health burden worldwide due to worsening endemic of hypertension, obesity, and diabetes. Previous studies have identified Tumor Protein p53-inducible Nuclear Protein 2 (Trp53inp2) as a molecular link between hyperglycemia and cardiac hypertrophy. However, its role in cardiac pathology has never been determined in vivo. In this study, we generated a cardiac specific knockout model of Trp53inp2 (Trp53inp2-cKO) and investigated the impact of Trp53inp2 inactivation on the pathogenesis of heart failure under mechanic or/and metabolic stresses. Based on echocardiography assessment, inactivation of Trp53inp2 in heart led to accelerated onset of HFrEF in response to pressure-overload, with significantly reduced ejection fraction and elevated heart failure marker genes comparing to the control mice. In contrast, inactivation of Trp53inp2 ameliorated cardiac dysfunction induced by combined stresses of high fat diet and moderate pressure overload (Cardiometabolic Disorder Model). Moreover, Trp53inp2 inactivation led to reduced expression of glucose metabolism genes in lean, pressure-overloaded hearts. However, the same set of genes were significantly induced in the Trp53inp2-cKO hearts under both mechanical and metabolic stresses. In summary, we have demonstrated for the first time that cardiomyocyte Trp53inp2 has diametrically differential roles in the pathogenesis of heart failure and glucose regulation under mechanical vs. mechanical plus metabolic stresses. This insight suggests that Trp53inp2 may exacerbate the cardiac dysfunction during pressure overload injury but have a protective effect in cardiac diastolic function in cardiometabolic disease.

12.
Proc Biol Sci ; 289(1979): 20220758, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35892218

RESUMO

Animals vary widely in body size within and across species. This has consequences for the function of organs and body parts in both large and small individuals. How these scale, in relation to body size, reveals evolutionary investment strategies, often resulting in trade-offs between functions. Eyes exemplify these trade-offs, as they are limited by their absolute size in two key performance features: sensitivity and spatial acuity. Due to their size polymorphism, insect compound eyes are ideal models for studying the allometric scaling of eye performance. Previous work on apposition compound eyes revealed that allometric scaling led to poorer spatial resolution and visual sensitivity in small individuals, across a range of insect species. Here, we used X-ray microtomography to investigate allometric scaling in superposition compound eyes-the second most common eye type in insects-for the first time. Our results reveal a novel strategy to cope with the trade-off between sensitivity and spatial acuity, as we show that the eyes of the hummingbird hawkmoth retain an optimal balance between these performance measures across all body sizes.


Assuntos
Olho , Mariposas , Animais , Tamanho Corporal , Olho/anatomia & histologia , Insetos
13.
Nat Commun ; 13(1): 3850, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787630

RESUMO

Heart failure with preserved ejection fraction (HFpEF) exhibits a sex bias, being more common in women than men, and we hypothesize that mitochondrial sex differences might underlie this bias. As part of genetic studies of heart failure in mice, we observe that heart mitochondrial DNA levels and function tend to be reduced in females as compared to males. We also observe that expression of genes encoding mitochondrial proteins are higher in males than females in human cohorts. We test our hypothesis in a panel of genetically diverse inbred strains of mice, termed the Hybrid Mouse Diversity Panel (HMDP). Indeed, we find that mitochondrial gene expression is highly correlated with diastolic function, a key trait in HFpEF. Consistent with this, studies of a "two-hit" mouse model of HFpEF confirm that mitochondrial function differs between sexes and is strongly associated with a number of HFpEF traits. By integrating data from human heart failure and the mouse HMDP cohort, we identify the mitochondrial gene Acsl6 as a genetic determinant of diastolic function. We validate its role in HFpEF using adenoviral over-expression in the heart. We conclude that sex differences in mitochondrial function underlie, in part, the sex bias in diastolic function.


Assuntos
Insuficiência Cardíaca , Animais , Coenzima A Ligases , Diástole/genética , Feminino , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Camundongos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Caracteres Sexuais , Volume Sistólico/genética
14.
Sci Rep ; 12(1): 12136, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840749

RESUMO

In this work, the application of a time resolved multi-contrast beam tracking technique to the investigation of the melting and solidification process in metals is presented. The use of such a technique allows retrieval of three contrast channels, transmission, refraction and dark-field, with millisecond time resolution. We investigated different melting conditions to characterize, at a proof-of-concept level, the features visible in each of the contrast channels. We found that the phase contrast channel provides a superior visibility of the density variations, allowing the liquid metal pool to be clearly distinguished. Refraction and dark-field were found to highlight surface roughness formed during solidification. This work demonstrates that the availability of the additional contrast channels provided by multi-contrast X-ray imaging delivers additional information, also when imaging high atomic number specimens with a significant absorption.

15.
Sci Rep ; 12(1): 7846, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551474

RESUMO

X-ray ptychography is a coherent scanning imaging technique widely used at synchrotron facilities for producing quantitative phase images beyond the resolution limit of conventional x-ray optics. The scanning nature of the technique introduces an inherent overhead to the collection at every scan position and limits the acquisition time of each 2D projection. The overhead associated with motion can be minimised with a continuous-scanning approach. Here we present an acquisition architecture based on continuous-scanning and up-triggering which allows to record ptychographic datasets at up to 9 kHz. We demonstrate the method by applying it to record 2D scans at up to 273 µm2/s and 3D scans of a (20 µm)3 volume in less than three hours. We discuss the current limitations and the outlook toward the development of sub-second 2D acquisition and minutes-long 3D ptychographic tomograms.


Assuntos
Síncrotrons , Tomografia por Raios X , Movimento (Física) , Óptica e Fotônica , Raios X
16.
Nat Commun ; 13(1): 2923, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614048

RESUMO

Understanding the function of biological tissues requires a coordinated study of physiology and structure, exploring volumes that contain complete functional units at a detail that resolves the relevant features. Here, we introduce an approach to address this challenge: Mouse brain tissue sections containing a region where function was recorded using in vivo 2-photon calcium imaging were stained, dehydrated, resin-embedded and imaged with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT). SXRT provided context at subcellular detail, and could be followed by targeted acquisition of multiple volumes using serial block-face electron microscopy (SBEM). In the olfactory bulb, combining SXRT and SBEM enabled disambiguation of in vivo-assigned regions of interest. In the hippocampus, we found that superficial pyramidal neurons in CA1a displayed a larger density of spine apparati than deeper ones. Altogether, this approach can enable a functional and structural investigation of subcellular features in the context of cells and tissues.


Assuntos
Imageamento Tridimensional , Síncrotrons , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/ultraestrutura , Imagem de Difusão por Ressonância Magnética , Camundongos , Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Microtomografia por Raio-X/métodos
17.
J Synchrotron Radiat ; 29(Pt 1): 138-147, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985431

RESUMO

Full-field transmission X-ray microscopy (TXM) is a very potent high-resolution X-ray imaging technique. However, it is challenging to achieve fast acquisitions because of the limited efficiency of the optics. Using a broader energy bandwidth, for example using a multilayer monochromator, directly increases the flux in the experiment. The advantage of more counts needs to be weighed against a deterioration in achievable resolution because focusing optics show chromatic aberrations. This study presents theoretical considerations of how much the resolution is affected by an increase in bandwidth as well as measurements at different energy bandwidths (ΔE/E = 0.013%, 0.27%, 0.63%) and the impact on achievable resolution. It is shown that using a multilayer monochromator instead of a classical silicon double-crystal monochromator can increase the flux by an order of magnitude with only a limited effect on the resolution.

18.
Phys Rev Lett ; 127(21): 215503, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860108

RESUMO

We present a dynamic implementation of the beam-tracking x-ray imaging method providing absorption, phase, and ultrasmall angle scattering signals with microscopic resolution and high frame rate. We demonstrate the method's ability to capture dynamic processes with 22-ms time resolution by investigating the melting of metals in laser additive manufacturing, which has so far been limited to single-modality synchrotron radiography. The simultaneous availability of three contrast channels enables earlier segmentation of droplets, tracking of powder dynamic, and estimation of unfused powder amounts, demonstrating that the method can provide additional information on melting processes.

19.
J Synchrotron Radiat ; 28(Pt 6): 1916-1920, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738946

RESUMO

X-ray ptychography and X-ray fluorescence are complementary nanoscale imaging techniques, providing structural and elemental information, respectively. Both methods acquire data by scanning a localized beam across the sample. X-ray ptychography processes the transmission signal of a coherent illumination interacting with the sample, to produce images with a resolution finer than the illumination spot and step size. By enlarging both the spot and the step size, the technique can cover extended regions efficiently. X-ray fluorescence records the emitted spectra as the sample is scanned through the localized beam and its spatial resolution is limited by the spot and step size. The requisites for fast ptychography and high-resolution fluorescence appear incompatible. Here, a novel scheme that mitigates the difference in requirements is proposed. The method makes use of two probes of different sizes at the sample, generated by using two different energies for the probes and chromatic focusing optics. The different probe sizes allow to reduce the number of acquisition steps for the joint fluorescence-ptychography scan compared with a standard single beam scan, while imaging the same field of view. The new method is demonstrated experimentally using two undulator harmonics, a Fresnel zone plate and an energy discriminating photon counting detector.


Assuntos
Imagem Óptica , Fótons , Radiografia , Raios X
20.
J Mol Cell Cardiol ; 161: 130-138, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34400182

RESUMO

BACKGROUND: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising tool for disease modeling and drug development. However, hiPSC-CMs remain functionally immature, which hinders their utility as a model of human cardiomyocytes. OBJECTIVE: To improve the electrophysiological maturation of hiPSC-CMs. METHODS AND RESULTS: On day 16 of cardiac differentiation, hiPSC-CMs were treated with 100 nmol/L triiodothyronine (T3) and 1 µmol/L Dexamethasone (Dex) or vehicle for 14 days. On day 30, vehicle- and T3 + Dex-treated hiPSC-CMs were dissociated and replated either as cell sheets or single cells. Optical mapping and patch-clamp technique were used to examine the electrophysiological properties of vehicle- and T3 + Dex-treated hiPSC-CMs. Compared to vehicle, T3 + Dex-treated hiPSC-CMs had a slower spontaneous beating rate, more hyperpolarized resting membrane potential, faster maximal upstroke velocity, and shorter action potential duration. Changes in spontaneous activity and action potential were mediated by decreased hyperpolarization-activated current (If) and increased inward rectifier potassium currents (IK1), sodium currents (INa), and the rapidly and slowly activating delayed rectifier potassium currents (IKr and IKs, respectively). Furthermore, T3 + Dex-treated hiPSC-CM cell sheets (hiPSC-CCSs) exhibited a faster conduction velocity and shorter action potential duration than the vehicle. Inhibition of IK1 by 100 µM BaCl2 significantly slowed conduction velocity and prolonged action potential duration in T3 + Dex-treated hiPSC-CCSs but had no effect in the vehicle group, demonstrating the importance of IK1 for conduction velocity and action potential duration. CONCLUSION: T3 + Dex treatment is an effective approach to rapidly enhance electrophysiological maturation of hiPSC-CMs.


Assuntos
Dexametasona/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/fisiologia , Canais de Potássio/genética , Tri-Iodotironina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio/metabolismo , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA