Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468660

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common blood disorder, presenting multiple symptoms, including hemolytic anemia. It affects 400 million people worldwide, with more than 160 single mutations reported in G6PD. The most severe mutations (about 70) are classified as class I, leading to more than 90% loss of activity of the wild-type G6PD. The crystal structure of G6PD reveals these mutations are located away from the active site, concentrating around the noncatalytic NADP+-binding site and the dimer interface. However, the molecular mechanisms of class I mutant dysfunction have remained elusive, hindering the development of efficient therapies. To resolve this, we performed integral structural characterization of five G6PD mutants, including four class I mutants, associated with the noncatalytic NADP+ and dimerization, using crystallography, small-angle X-ray scattering (SAXS), cryogenic electron microscopy (cryo-EM), and biophysical analyses. Comparisons with the structure and properties of the wild-type enzyme, together with molecular dynamics simulations, bring forward a universal mechanism for this severe G6PD deficiency due to the class I mutations. We highlight the role of the noncatalytic NADP+-binding site that is crucial for stabilization and ordering two ß-strands in the dimer interface, which together communicate these distant structural aberrations to the active site through a network of additional interactions. This understanding elucidates potential paths for drug development targeting G6PD deficiency.


Assuntos
Coenzimas/química , Glucosefosfato Desidrogenase/química , Leucina/química , Mutação , NADP/química , Prolina/química , Sítios de Ligação , Clonagem Molecular , Coenzimas/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/enzimologia , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/patologia , Humanos , Cinética , Leucina/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , NADP/metabolismo , Prolina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
2.
ChemMedChem ; 14(14): 1321-1324, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31183991

RESUMO

We recently identified AG1, a small-molecule activator that functions by promoting oligomerization of glucose-6-phosphate dehydrogenase (G6PD) to the catalytically competent forms. Biochemical experiments indicate that the activation of G6PD by the original hit molecule (AG1) is noncovalent and that one C2 -symmetric region of the G6PD homodimer is important for ligand function. Consequently, the disulfide in AG1 is not required for activation of G6PD, and a number of analogues were prepared without this reactive moiety. Our study supports a mechanism of action whereby AG1 bridges the dimer interface at the structural nicotinamide adenine dinucleotide phosphate (NADP+ ) binding sites of two interacting G6PD monomers. Small molecules that promote G6PD oligomerization have the potential to provide a first-in-class treatment for G6PD deficiency. This general strategy could be applied to other enzyme deficiencies in which control of oligomerization can enhance enzymatic activity and/or stability.


Assuntos
Ativadores de Enzimas/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Indóis/metabolismo , Sítios de Ligação , Ativadores de Enzimas/síntese química , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/genética , Humanos , Indóis/síntese química , Ligantes , Simulação de Acoplamento Molecular , Mutação , NADP/química , NADP/metabolismo , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos
3.
Nat Commun ; 9(1): 4045, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279493

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, one of the most common human genetic enzymopathies, is caused by over 160 different point mutations and contributes to the severity of many acute and chronic diseases associated with oxidative stress, including hemolytic anemia and bilirubin-induced neurological damage particularly in newborns. As no medications are available to treat G6PD deficiency, here we seek to identify a small molecule that corrects it. Crystallographic study and mutagenesis analysis identify the structural and functional defect of one common mutant (Canton, R459L). Using high-throughput screening, we subsequently identify AG1, a small molecule that increases the activity of the wild-type, the Canton mutant and several other common G6PD mutants. AG1 reduces oxidative stress in cells and zebrafish. Furthermore, AG1 decreases chloroquine- or diamide-induced oxidative stress in human erythrocytes. Our study suggests that a pharmacological agent, of which AG1 may be a lead, will likely alleviate the challenges associated with G6PD deficiency.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/tratamento farmacológico , Glucosefosfato Desidrogenase/metabolismo , Indóis/uso terapêutico , Animais , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/genética , Hemólise/efeitos dos fármacos , Humanos , Indóis/química , Indóis/farmacologia , Mutação de Sentido Incorreto , Estresse Oxidativo/efeitos dos fármacos , Estabilidade Proteica , Peixe-Zebra
4.
J Am Chem Soc ; 137(28): 9088-93, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25961416

RESUMO

New reactions and reagents that allow for multiple bond-forming events per synthetic operation are required to achieve structural complexity and thus value with step-, time-, cost-, and waste-economy. Here we report a new class of reagents that function like tetramethyleneethane (TME), allowing for back-to-back [4 + 2] cycloadditions, thereby amplifying the complexity-increasing benefits of Diels-Alder and metal-catalyzed cycloadditions. The parent recursive reagent, 2,3-dimethylene-4-trimethylsilylbutan-1-ol (DMTB), is readily available from the metathesis of ethylene and THP-protected 4-trimethylsilylbutyn-1-ol. DMTB and related reagents engage diverse dienophiles in an initial Diels-Alder or metal-catalyzed [4 + 2] cycloaddition, triggering a subsequent vinylogous Peterson elimination that recursively generates a new diene for a second cycloaddition. Overall, this multicomponent catalytic cascade produces in one operation carbo- and heterobicyclic building blocks for the synthesis of a variety of natural products, therapeutic leads, imaging agents, and materials. Its application to the three step synthesis of a new solvatochromic fluorophore, N-ethyl(6-N,N-dimethylaminoanthracene-2,3-dicarboximide) (6-DMA), and the photophysical characterization of this fluorophore are described.


Assuntos
Alcenos/química , Antracenos/síntese química , Reação de Cicloadição/métodos , Etano/análogos & derivados , Corantes Fluorescentes/síntese química , Antracenos/química , Catálise , Reação de Cicloadição/economia , Etano/química , Corantes Fluorescentes/química , Indicadores e Reagentes/química , Metais/química
5.
J Chem Educ ; 90(3): 326-331, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23585695

RESUMO

A chemical research program at a public high school has been developed. The full-year Advanced Chemical Research class (ACR) in the high school enrolls 20 to 30 seniors each year, engaging them in long-term experimental projects. Through partnerships involving university scientists, ACR high school students have had the opportunity to explore a number of highly sophisticated original research projects. As an example of the quality of experimental work made possible through these high school-university partnerships, this article describes the development of a novel method for the oxidation of ethidium bromide, a mutagen commonly used in molecular biology. Data collected from ACR alumni show that the ACR program is instrumental in encouraging students to pursue careers in scientific fields and in creating life-long problem-solvers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA