RESUMO
Nirmatrelvir was the first protease inhibitor specifically developed against the SARS-CoV-2 main protease (3CLpro/Mpro) and licensed for clinical use. As SARS-CoV-2 continues to spread, variants resistant to nirmatrelvir and other currently available treatments are likely to arise. This study aimed to identify and characterize mutations that confer resistance to nirmatrelvir. To safely generate Mpro resistance mutations, we passaged a previously developed, chimeric vesicular stomatitis virus (VSV-Mpro) with increasing, yet suboptimal concentrations of nirmatrelvir. Using Wuhan-1 and Omicron Mpro variants, we selected a large set of mutants. Some mutations are frequently present in GISAID, suggesting their relevance in SARS-CoV-2. The resistance phenotype of a subset of mutations was characterized against clinically available protease inhibitors (nirmatrelvir and ensitrelvir) with cell-based, biochemical and SARS-CoV-2 replicon assays. Moreover, we showed the putative molecular mechanism of resistance based on in silico molecular modelling. These findings have implications on the development of future generation Mpro inhibitors, will help to understand SARS-CoV-2 protease inhibitor resistance mechanisms and show the relevance of specific mutations, thereby informing treatment decisions.
Assuntos
Antivirais , Proteases 3C de Coronavírus , Farmacorresistência Viral , Mutação , Inibidores de Proteases , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Humanos , Farmacorresistência Viral/genética , Inibidores de Proteases/farmacologia , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Antivirais/farmacologia , COVID-19/virologia , Leucina/análogos & derivados , Leucina/genética , Leucina/farmacologia , Animais , Betacoronavirus/genética , Betacoronavirus/efeitos dos fármacos , Vesiculovirus/genética , Vesiculovirus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Lactamas , Nitrilas , ProlinaRESUMO
In the SARS-CoV-2 pandemic, the so far two most effective approved antivirals are the protease inhibitors nirmatrelvir, in combination with ritonavir (Paxlovid) and ensitrelvir (Xocova). However, antivirals and indeed all antimicrobial drugs are sooner or later challenged by resistance mutations. Studying such mutations is essential for treatment decisions and pandemic preparedness. At the same time, generating resistant viruses to assess mutants is controversial, especially with pathogens of pandemic potential like SARS-CoV-2. To circumvent gain-of-function research with non-attenuated SARS-CoV-2, a previously developed safe system based on a chimeric vesicular stomatitis virus dependent on the SARS-CoV-2 main protease (VSV-Mpro) was used to select mutations against ensitrelvir. Ensitrelvir is clinically especially relevant due to its single-substance formulation, avoiding drug-drug interactions by the co-formulated CYP3A4 inhibitor ritonavir in Paxlovid. By treating VSV-Mpro with ensitrelvir, highly-specific resistant mutants against this inhibitor were selected, while being still fully or largely susceptible to nirmatrelvir. We then confirmed several ensitrelvir-specific mutants in gold standard enzymatic assays and SARS-CoV-2 replicons. These findings indicate that the two inhibitors can have distinct viral resistance profiles, which could determine treatment decisions.
RESUMO
The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an epidemic, zoonotically emerging pathogen initially reported in Saudi Arabia in 2012. MERS-CoV has the potential to mutate or recombine with other coronaviruses, thus acquiring the ability to efficiently spread among humans and become pandemic. Its high mortality rate of up to 35% and the absence of effective targeted therapies call for the development of antiviral drugs for this pathogen. Since the beginning of the SARS-CoV-2 pandemic, extensive research has focused on identifying protease inhibitors for the treatment of SARS-CoV-2. Our intention was therefore to assess whether these protease inhibitors are viable options for combating MERS-CoV. To that end, we used previously established protease assays to quantify inhibition of SARS-CoV-2, MERS-CoV and other main proteases. Nirmatrelvir inhibited several of these proteases, whereas ensitrelvir was less broadly active. To simulate nirmatrelvir's clinical use against MERS-CoV and subsequent resistance development, we applied a safe, surrogate virus-based system. Using the surrogate virus, we previously selected hallmark mutations of SARS-CoV-2-Mpro, such as T21I, M49L, S144A, E166A/K/V and L167F. In the current study, we selected a pool of MERS-CoV-Mpro mutants, characterized the resistance and modelled the steric effect of catalytic site mutants S142G, S142R, S147Y and A171S.
RESUMO
Nirmatrelvir was the first protease inhibitor (PI) specifically developed against the SARS-CoV-2 main protease (3CLpro/Mpro) and licensed for clinical use. As SARS-CoV-2 continues to spread, variants resistant to nirmatrelvir and other currently available treatments are likely to arise. This study aimed to identify and characterize mutations that confer resistance to nirmatrelvir. To safely generate Mpro resistance mutations, we passaged a previously developed, chimeric vesicular stomatitis virus (VSV-Mpro) with increasing, yet suboptimal concentrations of nirmatrelvir. Using Wuhan-1 and Omicron Mpro variants, we selected a large set of mutants. Some mutations are frequently present in GISAID, suggesting their relevance in SARS-CoV-2. The resistance phenotype of a subset of mutations was characterized against clinically available PIs (nirmatrelvir and ensitrelvir) with cell-based and biochemical assays. Moreover, we showed the putative molecular mechanism of resistance based on in silico molecular modelling. These findings have implications on the development of future generation Mpro inhibitors, will help to understand SARS-CoV-2 protease-inhibitor-resistance mechanisms and show the relevance of specific mutations in the clinic, thereby informing treatment decisions.
RESUMO
INTRODUCTION: Correct risk assessment of disease recurrence in patients with early breast cancer is critically important to detect patients who may be spared adjuvant chemotherapy. In clinical practice this is increasingly done based on the results of gene expression assays. In the present study we compared the concordance of the 70-gene signature MammaPrint (MP) with the 12 gene assay EndoPredict (EP). METHODS: Representative tissue of 48 primary tumours was analysed with the MP during routine diagnostic purposes. Corresponding formalin-fixed, paraffin-embedded tissue was thereafter analysed by the EP test. Risk categories of both tests were compared. RESULTS: 41 of 48 tumours could be directly compared by both tests. Of the 17 MP low risk cases, only 9 were considered low risk by EP (53% agreement) and of the 24 MP high risk cases, 18 were high risk by EP (75% agreement). Discrepancies occurred in 14 of 41 cases (34.1%). There was only a weak and non-significant correlation between the MP and EP test with an overall concordance of only 66%. The original therapeutic recommendation was based on the MP and would have been changed in 38% of the patients following EP test results. 4 patients developed distant metastases. The respective tumours of these patients were all classified as high risk by the EP, but only 3 were classified as high risk by the MP. CONCLUSION: Both tests resulted in different treatment recommendations for a significant proportion of patients and cannot be used interchangeably. The results underscore the urgent need for further comparative analyses of multi-genomic tests to avoid misclassification of disease recurrence risk in breast cancer patients.