Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 220: 106813, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35461127

RESUMO

BACKGROUND AND OBJECTIVE: Extracting the mechanical behaviors of bioprosthetic aortic valve leaflets is necessary for the appropriate design and manufacture of the prosthetic valves. The goal of this study was to opt a proper tissue for the valve leaflets by comparing the mechanical properties of the equine, porcine, and donkey pericardia with those of the bovine pericardium and human aortic valve leaflets. METHODS: After tissue fixation in glutaraldehyde, the mechanical behaviors of the pericardial tissues were experimentally evaluated through computational methods. The relaxation tests were performed along the tissue fiber direction. The Mooney-Rivlin model was utilized to describe the hyperelastic behavior of the tissues at the ramp portion. The viscous behaviors at the hold portion were extracted using the Fung quasi-linear viscoelastic (QLV) model. Furthermore, the extracted parameters were used in the modeling of the bovine, equine, porcine, and donkey pericardia through finite element analysis (FEA). RESULTS: Based on the results, relaxation percentages of the equine, donkey, and bovine pericardia were greater than that of the porcine pericardium and similar to the native human aortic valve leaflets. Indeed, the equine and donkey pericardia were found more viscous and less elastic than the porcine pericardium. Compared with the porcine pericardium, the mechanical properties of the equine and donkey pericardia were rather closer to those of the native human leaflets and bovine pericardium. The computational analysis demonstrated that the donkey pericardium is preferable over other types of pericardium due to the low stress on the leaflets during the systolic and diastolic phases and the large geometric orifice area (GOA). CONCLUSION: The donkey pericardium might be a good candidate valve leaflet material for bioprosthetic aortic valves.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Animais , Valva Aórtica/cirurgia , Fenômenos Biomecânicos , Bovinos , Elasticidade , Análise de Elementos Finitos , Cavalos , Pericárdio , Suínos
2.
J Mech Behav Biomed Mater ; 121: 104621, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34130079

RESUMO

Bicuspid aortic valve is a congenital cardiac anomaly and common etiology of aortic stenosis. Given the positive outcomes of transcatheter aortic valve replacement (TAVR) in low-risk patients, TAVR will become more prevalent in the future in the treatment of severe bicuspid valve stenosis. However, asymmetrical bicuspid valve anatomy and calcification can prevent the circular and complete expansion of transcatheter aortic valves (TAVs). In previous studies, examining the impact of elliptical TAV deployment on leaflet stress distribution, asymmetric expansion of balloon-expandable intra-annular devices was studied up to an ellipticity index (long/short TAV diameter) of 1.4. However, such a high degree of eccentricity has not been observed in clinical studies with balloon-expandable devices. High degrees of stent eccentricity have been observed in self-expanding TAVs, such as CoreValve. However, CoreValve is a supra-annular device, and it was not clear if eccentric and incomplete stent deployment at the annulus would alter leaflet stress and strain distributions. This study aimed to assess the effects of eccentric and incomplete stent deployment of CoreValves in bicuspid aortic valves and compare the results to that of SAPIEN 3. Leaflet stress distribution and leaflet kinematics of 26-mm CoreValve and 26-mm SAPIEN 3 devices in bicuspid valves were obtained in a range that was observed in previous clinical studies. The results indicated that elliptical and incomplete stent deployment of TAVs increase leaflet stress and impair leaflet kinematics. The changes were more pronounced in CoreValve than SAPIEN 3. Increased leaflet stress can reduce long-term valve durability, and impaired leaflet kinematics can potentially increase blood stasis on the TAV leaflets. The study provides complementary insights into the mechanics of TAVs in bicuspid aortic valves.


Assuntos
Próteses Valvulares Cardíacas , Substituição da Valva Aórtica Transcateter , Valva Aórtica , Humanos , Valva Mitral , Desenho de Prótese , Stents
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA