Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107250, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569935

RESUMO

The process of heme binding to a protein is prevalent in almost all forms of life to control many important biological properties, such as O2-binding, electron transfer, gas sensing or to build catalytic power. In these cases, heme typically binds tightly (irreversibly) to a protein in a discrete heme binding pocket, with one or two heme ligands provided most commonly to the heme iron by His, Cys or Tyr residues. Heme binding can also be used as a regulatory mechanism, for example in transcriptional regulation or ion channel control. When used as a regulator, heme binds more weakly, with different heme ligations and without the need for a discrete heme pocket. This makes the characterization of heme regulatory proteins difficult, and new approaches are needed to predict and understand the heme-protein interactions. We apply a modified version of the ProFunc bioinformatics tool to identify heme-binding sites in a test set of heme-dependent regulatory proteins taken from the Protein Data Bank and AlphaFold models. The potential heme binding sites identified can be easily visualized in PyMol and, if necessary, optimized with RosettaDOCK. We demonstrate that the methodology can be used to identify heme-binding sites in proteins, including in cases where there is no crystal structure available, but the methodology is more accurate when the quality of the structural information is high. The ProFunc tool, with the modification used in this work, is publicly available at https://www.ebi.ac.uk/thornton-srv/databases/profunc and can be readily adopted for the examination of new heme binding targets.

2.
J Biol Chem ; 299(8): 105014, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414149

RESUMO

The target for humoral immunity, SARS-CoV-2 spike glycoprotein, has become the focus of vaccine research and development. Previous work demonstrated that the N-terminal domain (NTD) of SARS-CoV-2 spike binds biliverdin-a product of heme catabolism-causing a strong allosteric effect on the activity of a subset of neutralizing antibodies. Herein, we show that the spike glycoprotein is also able to bind heme (KD = 0.5 ± 0.2 µM). Molecular modeling indicated that the heme group fits well within the same pocket on the SARS-CoV-2 spike NTD. Lined by aromatic and hydrophobic residues (W104, V126, I129, F192, F194, I203, and L226), the pocket provides a suitable environment to stabilize the hydrophobic heme. Mutagenesis of N121 has a substantive effect on heme binding (KD = 3000 ± 220 µM), confirming the pocket as a major heme binding location of the viral glycoprotein. Coupled oxidation experiments in the presence of ascorbate indicated that the SARS-CoV-2 glycoprotein can catalyze the slow conversion of heme to biliverdin. The heme trapping and oxidation activities of the spike may allow the virus to reduce levels of free heme during infection to facilitate evasion of the adaptive and innate immunity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Anticorpos Antivirais , Biliverdina , Receptores Virais/metabolismo , Anticorpos Neutralizantes
3.
J Biol Chem ; 298(8): 102204, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35772495

RESUMO

The protozoan parasite Trypanosoma cruzi is the causative agent of American trypanosomiasis, otherwise known as Chagas disease. To survive in the host, the T. cruzi parasite needs antioxidant defense systems. One of these is a hybrid heme peroxidase, the T. cruzi ascorbate peroxidase-cytochrome c peroxidase enzyme (TcAPx-CcP). TcAPx-CcP has high sequence identity to members of the class I peroxidase family, notably ascorbate peroxidase (APX) and cytochrome c peroxidase (CcP), as well as a mitochondrial peroxidase from Leishmania major (LmP). The aim of this work was to solve the structure and examine the reactivity of the TcAPx-CcP enzyme. Low temperature electron paramagnetic resonance spectra support the formation of an exchange-coupled [Fe(IV)=O Trp233•+] compound I radical species, analogous to that used in CcP and LmP. We demonstrate that TcAPx-CcP is similar in overall structure to APX and CcP, but there are differences in the substrate-binding regions. Furthermore, the electron transfer pathway from cytochrome c to the heme in CcP and LmP is preserved in the TcAPx-CcP structure. Integration of steady state kinetic experiments, molecular dynamic simulations, and bioinformatic analyses indicates that TcAPx-CcP preferentially oxidizes cytochrome c but is still competent for oxidization of ascorbate. The results reveal that TcAPx-CcP is a credible cytochrome c peroxidase, which can also bind and use ascorbate in host cells, where concentrations are in the millimolar range. Thus, kinetically and functionally TcAPx-CcP can be considered a hybrid peroxidase.


Assuntos
Citocromo-c Peroxidase , Trypanosoma cruzi , Antioxidantes , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Doença de Chagas/parasitologia , Citocromo-c Peroxidase/química , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Citocromos c/metabolismo , Heme/metabolismo , Humanos , Peroxidase/metabolismo , Peroxidases/metabolismo , Especificidade por Substrato , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/metabolismo
5.
JACS Au ; 1(10): 1541-1555, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34723258

RESUMO

Heme is essential for the survival of virtually all living systems-from bacteria, fungi, and yeast, through plants to animals. No eukaryote has been identified that can survive without heme. There are thousands of different proteins that require heme in order to function properly, and these are responsible for processes such as oxygen transport, electron transfer, oxidative stress response, respiration, and catalysis. Further to this, in the past few years, heme has been shown to have an important regulatory role in cells, in processes such as transcription, regulation of the circadian clock, and the gating of ion channels. To act in a regulatory capacity, heme needs to move from its place of synthesis (in mitochondria) to other locations in cells. But while there is detailed information on how the heme lifecycle begins (heme synthesis), and how it ends (heme degradation), what happens in between is largely a mystery. Here we summarize recent information on the quantification of heme in cells, and we present a discussion of a mechanistic framework that could meet the logistical challenge of heme distribution.

6.
J Inorg Biochem ; 225: 111604, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571402

RESUMO

The kynurenine pathway is the major route of tryptophan metabolism. The first step of this pathway is catalysed by one of two heme-dependent dioxygenase enzymes - tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) - leading initially to the formation of N-formylkynurenine (NFK). In this paper, we present a crystal structure of a bacterial TDO from X. campestris in complex with l-kynurenine, the hydrolysed product of NFK. l-kynurenine is bound at the active site in a similar location to the substrate (l-Trp). Hydrogen bonding interactions with Arg117 and the heme 7-propionate anchor the l-kynurenine molecule into the pocket. A mechanism for the hydrolysis of NFK in the active site is presented.


Assuntos
Cinurenina/metabolismo , Triptofano Oxigenase/metabolismo , Ligação de Hidrogênio , Ferro/química , Cinurenina/química , Oxirredução , Ligação Proteica , Estereoisomerismo , Triptofano/química , Triptofano Oxigenase/química , Xanthomonas campestris/enzimologia
7.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035176

RESUMO

In addition to heme's role as the prosthetic group buried inside many different proteins that are ubiquitous in biology, there is new evidence that heme has substantive roles in cellular signaling and regulation. This means that heme must be available in locations distant from its place of synthesis (mitochondria) in response to transient cellular demands. A longstanding question has been to establish the mechanisms that control the supply and demand for cellular heme. By fusing a monomeric heme-binding peroxidase (ascorbate peroxidase, mAPX) to a monomeric form of green-fluorescent protein (mEGFP), we have developed a heme sensor (mAPXmEGFP) that can respond to heme availability. By means of fluorescence lifetime imaging, this heme sensor can be used to quantify heme concentrations; values of the mean fluorescence lifetime (τMean) for mAPX-mEGFP are shown to be responsive to changes in free (unbound) heme concentration in cells. The results demonstrate that concentrations are typically limited to one molecule or less within cellular compartments. These miniscule amounts of free heme are consistent with a system that sequesters the heme and is able to buffer changes in heme availability while retaining the capability to mobilize heme when and where it is needed. We propose that this exchangeable supply of heme can operate using mechanisms for heme transfer that are analogous to classical ligand-exchange mechanisms. This exquisite control, in which heme is made available for transfer one molecule at a time, protects the cell against the toxic effect of excess heme and offers a simple mechanism for heme-dependent regulation in single-molecule steps.


Assuntos
Heme/análise , Heme/metabolismo , Técnicas de Sonda Molecular , Ascorbato Peroxidases , Escherichia coli , Proteínas de Fluorescência Verde
8.
Angew Chem Int Ed Engl ; 60(26): 14578-14585, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33826799

RESUMO

Oxygen activation in all heme enzymes requires the formation of high oxidation states of iron, usually referred to as ferryl heme. There are two known intermediates: Compound I and Compound II. The nature of the ferryl heme-and whether it is an FeIV =O or FeIV -OH species-is important for controlling reactivity across groups of heme enzymes. The most recent evidence for Compound I indicates that the ferryl heme is an unprotonated FeIV =O species. For Compound II, the nature of the ferryl heme is not unambiguously established. Here, we report 1.06 Šand 1.50 Šcrystal structures for Compound II intermediates in cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX), collected using the X-ray free electron laser at SACLA. The structures reveal differences between the two peroxidases. The iron-oxygen bond length in CcP (1.76 Å) is notably shorter than in APX (1.87 Å). The results indicate that the ferryl species is finely tuned across Compound I and Compound II species in closely related peroxidase enzymes. We propose that this fine-tuning is linked to the functional need for proton delivery to the heme.


Assuntos
Lasers , Peroxidases/química , Cristalografia por Raios X , Modelos Moleculares , Peroxidases/metabolismo
9.
RSC Chem Biol ; 2(6): 1651-1660, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34977580

RESUMO

The metabolism of l-tryptophan to N-formyl-l-kynurenine by indoleamine-2,3-dioxygenase 1 (IDO1) is thought to play a critical role in tumour-mediated immune suppression. Whilst there has been significant progress in elucidating the overall enzymatic mechanism of IDO1 and related enzymes, key aspects of the catalytic cycle remain poorly understood. Here we report the design, synthesis and biological evaluation of a series of tryptophan analogues which have the potential to intercept putative intermediates in the metabolism of 1 by IDO1. Functionally-relevant binding to IDO1 was demonstrated through enzymatic inhibition, however no IDO1-mediated metabolism of these compounds was observed. Subsequent T m-shift analysis shows the most active compound, 17, exhibits a distinct profile from known competitive IDO1 inhibitors, with docking studies supporting the hypothesis that 17 may bind at the recently-discovered Si site. These findings provide a start-point for development of further mechanistic probes and more potent tryptophan-based IDO1 inhibitors.

10.
Angew Chem Weinheim Bergstr Ger ; 133(26): 14699-14706, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38505375

RESUMO

Oxygen activation in all heme enzymes requires the formation of high oxidation states of iron, usually referred to as ferryl heme. There are two known intermediates: Compound I and Compound II. The nature of the ferryl heme-and whether it is an FeIV=O or FeIV-OH species-is important for controlling reactivity across groups of heme enzymes. The most recent evidence for Compound I indicates that the ferryl heme is an unprotonated FeIV=O species. For Compound II, the nature of the ferryl heme is not unambiguously established. Here, we report 1.06 Šand 1.50 Šcrystal structures for Compound II intermediates in cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX), collected using the X-ray free electron laser at SACLA. The structures reveal differences between the two peroxidases. The iron-oxygen bond length in CcP (1.76 Å) is notably shorter than in APX (1.87 Å). The results indicate that the ferryl species is finely tuned across Compound I and Compound II species in closely related peroxidase enzymes. We propose that this fine-tuning is linked to the functional need for proton delivery to the heme.

11.
J Biol Chem ; 295(38): 13277-13286, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32723862

RESUMO

The EAG (ether-à-go-go) family of voltage-gated K+ channels are important regulators of neuronal and cardiac action potential firing (excitability) and have major roles in human diseases such as epilepsy, schizophrenia, cancer, and sudden cardiac death. A defining feature of EAG (Kv10-12) channels is a highly conserved domain on the N terminus, known as the eag domain, consisting of a Per-ARNT-Sim (PAS) domain capped by a short sequence containing an amphipathic helix (Cap domain). The PAS and Cap domains are both vital for the normal function of EAG channels. Using heme-affinity pulldown assays and proteomics of lysates from primary cortical neurons, we identified that an EAG channel, hERG3 (Kv11.3), binds to heme. In whole-cell electrophysiology experiments, we identified that heme inhibits hERG3 channel activity. In addition, we expressed the Cap and PAS domain of hERG3 in Escherichia coli and, using spectroscopy and kinetics, identified the PAS domain as the location for heme binding. The results identify heme as a regulator of hERG3 channel activity. These observations are discussed in the context of the emerging role for heme as a regulator of ion channel activity in cells.


Assuntos
Córtex Cerebral/química , Canais de Potássio Éter-A-Go-Go/química , Heme/química , Neurônios/química , Córtex Cerebral/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Heme/metabolismo , Humanos , Neurônios/metabolismo , Ligação Proteica , Domínios Proteicos
12.
ACS Catal ; 10(4): 2735-2746, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32550044

RESUMO

Nature employs a limited number of genetically encoded axial ligands to control diverse heme enzyme activities. Deciphering the functional significance of these ligands requires a quantitative understanding of how their electron-donating capabilities modulate the structures and reactivities of the iconic ferryl intermediates compounds I and II. However, probing these relationships experimentally has proven to be challenging as ligand substitutions accessible via conventional mutagenesis do not allow fine tuning of electron donation and typically abolish catalytic function. Here, we exploit engineered translation components to replace the histidine ligand of cytochrome c peroxidase (CcP) by a less electron-donating N δ-methyl histidine (Me-His) with little effect on the enzyme structure. The rate of formation (k 1) and the reactivity (k 2) of compound I are unaffected by ligand substitution. In contrast, proton-coupled electron transfer to compound II (k 3) is 10-fold slower in CcP Me-His, providing a direct link between electron donation and compound II reactivity, which can be explained by weaker electron donation from the Me-His ligand ("the push") affording an electron-deficient ferryl oxygen with reduced proton affinity ("the pull"). The deleterious effects of the Me-His ligand can be fully compensated by introducing a W51F mutation designed to increase "the pull" by removing a hydrogen bond to the ferryl oxygen. Analogous substitutions in ascorbate peroxidase lead to similar activity trends to those observed in CcP, suggesting that a common mechanistic strategy is employed by enzymes using distinct electron transfer pathways. Our study highlights how noncanonical active site substitutions can be used to directly probe and deconstruct highly evolved bioinorganic mechanisms.

13.
Proc Natl Acad Sci U S A ; 117(12): 6484-6490, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152099

RESUMO

In redox metalloenzymes, the process of electron transfer often involves the concerted movement of a proton. These processes are referred to as proton-coupled electron transfer, and they underpin a wide variety of biological processes, including respiration, energy conversion, photosynthesis, and metalloenzyme catalysis. The mechanisms of proton delivery are incompletely understood, in part due to an absence of information on exact proton locations and hydrogen bonding structures in a bona fide metalloenzyme proton pathway. Here, we present a 2.1-Å neutron crystal structure of the complex formed between a redox metalloenzyme (ascorbate peroxidase) and its reducing substrate (ascorbate). In the neutron structure of the complex, the protonation states of the electron/proton donor (ascorbate) and all of the residues involved in the electron/proton transfer pathway are directly observed. This information sheds light on possible proton movements during heme-catalyzed oxygen activation, as well as on ascorbate oxidation.


Assuntos
Elétrons , Metaloproteínas/química , Prótons , Ascorbato Peroxidases/química , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Catálise , Heme/química , Ligação de Hidrogênio , Metaloproteínas/metabolismo , Modelos Moleculares , Difração de Nêutrons , Oxirredução
14.
Methods Enzymol ; 634: 379-389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32093841

RESUMO

By combining the normal practice for X-ray crystallography of collecting diffraction data at 100K with neutron crystallography the structures of cryo-trapped enzyme intermediates have been determined, revealing the positions of the previously hidden hydrogens that are essential to a better understanding of the involved mechanism.


Assuntos
Difração de Nêutrons , Nêutrons , Cristalografia , Cristalografia por Raios X , Heme , Peroxidases
15.
Proc Natl Acad Sci U S A ; 116(40): 19911-19916, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527239

RESUMO

The circadian clock is an endogenous time-keeping system that is ubiquitous in animals and plants as well as some bacteria. In mammals, the clock regulates the sleep-wake cycle via 2 basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain proteins-CLOCK and BMAL1. There is emerging evidence to suggest that heme affects circadian control, through binding of heme to various circadian proteins, but the mechanisms of regulation are largely unknown. In this work we examine the interaction of heme with human CLOCK (hCLOCK). We present a crystal structure for the PAS-A domain of hCLOCK, and we examine heme binding to the PAS-A and PAS-B domains. UV-visible and electron paramagnetic resonance spectroscopies are consistent with a bis-histidine ligated heme species in solution in the oxidized (ferric) PAS-A protein, and by mutagenesis we identify His144 as a ligand to the heme. There is evidence for flexibility in the heme pocket, which may give rise to an additional Cys axial ligand at 20K (His/Cys coordination). Using DNA binding assays, we demonstrate that heme disrupts binding of CLOCK to its E-box DNA target. Evidence is presented for a conformationally mobile protein framework, which is linked to changes in heme ligation and which has the capacity to affect binding to the E-box. Within the hCLOCK structural framework, this would provide a mechanism for heme-dependent transcriptional regulation.


Assuntos
Proteínas CLOCK/química , Elementos E-Box , Heme/química , Transdução de Sinais , Fatores de Transcrição ARNTL/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Catálise , Relógios Circadianos , Criptocromos/química , DNA/química , Elétrons , Escherichia coli/metabolismo , Humanos , Ligantes , Proteínas do Tecido Nervoso/química , Oxigênio/química , Proteínas Circadianas Period/química , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Transcrição Gênica
16.
Anal Biochem ; 572: 45-51, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30807737

RESUMO

Accumulating evidence suggests a new role for cellular heme as a signalling molecule, in which interactions with target proteins are more transient than found with traditionally-defined hemoproteins. To study this role, a precise method is needed for determining the heme-binding affinity (or dissociation constant, Kd). Estimates of Kd are commonly made following a spectrophotometric titration of an apo-protein with hemin. An impediment to precise determination is, however, the challenge in discriminating between the Soret absorbance for the product (holo-protein) and that for the titrant (hemin). An altogether different approach has been used in this paper to separate contributions made by these components to absorbance values. The pure component spectra and concentration profiles are estimated by a multivariate curve-resolution (MCR) algorithm. This approach has significant advantages over existing methods. First, a more precise determination of Kd can be made as concentration profiles for all three components (apo-protein/holo-protein/hemin) are determined and can be simultaneously fitted to a theoretical-binding model. Second, an absorption spectrum for the holo-protein is calculated. This is a unique advantage of MCR and attractive for investigating proteins in which the nature of heme binding has not, hitherto, been characterised because the holo-protein spectrum provides information on the interaction.


Assuntos
Heme/metabolismo , Hemina/metabolismo , Algoritmos , Heme/química , Hemina/química , Mioglobina/química , Mioglobina/metabolismo , Ligação Proteica , Espectrofotometria
17.
Acta Crystallogr D Struct Biol ; 74(Pt 8): 792-799, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30082515

RESUMO

The use of boiled-off liquid nitrogen to maintain protein crystals at 100 K during X-ray data collection has become almost universal. Applying this to neutron protein crystallography offers the opportunity to significantly broaden the scope of biochemical problems that can be addressed, although care must be taken in assuming that direct extrapolation to room temperature is always valid. Here, the history to date of neutron protein cryo-crystallography and the particular problems and solutions associated with the mounting and cryocooling of the larger crystals needed for neutron crystallography are reviewed. Finally, the outlook for further cryogenic neutron studies using existing and future neutron instrumentation is discussed.


Assuntos
Temperatura Baixa , Difração de Nêutrons/métodos , Proteínas/química , Cristalografia , História do Século XX , História do Século XXI , Difração de Nêutrons/história
18.
J Biol Chem ; 293(14): 5210-5219, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29475945

RESUMO

Electron transfer in all living organisms critically relies on formation of complexes between the proteins involved. The function of these complexes requires specificity of the interaction to allow for selective electron transfer but also a fast turnover of the complex, and they are therefore often transient in nature, making them challenging to study. Here, using small-angle neutron scattering with contrast matching with deuterated protein, we report the solution structure of the electron transfer complex between cytochrome P450 reductase (CPR) and its electron transfer partner cytochrome c This is the first reported solution structure of a complex between CPR and an electron transfer partner. The structure shows that the interprotein interface includes residues from both the FMN- and FAD-binding domains of CPR. In addition, the FMN is close to the heme of cytochrome c but distant from the FAD, indicating that domain movement is required between the electron transfer steps in the catalytic cycle of CPR. In summary, our results reveal key details of the CPR catalytic mechanism, including interactions of two domains of the reductase with cytochrome c and motions of these domains relative to one another. These findings shed light on interprotein electron transfer in this system and illustrate a powerful approach for studying solution structures of protein-protein complexes.


Assuntos
Citocromos c/química , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/ultraestrutura , Citocromos c/ultraestrutura , Transporte de Elétrons , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Cinética , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Difração de Nêutrons/métodos , Nêutrons , Oxirredução , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade , Termodinâmica
19.
J Inorg Biochem ; 180: 230-234, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29317104

RESUMO

Ascorbate peroxidase (APX) is a class I heme peroxidase. It has two sites for binding of substrates. One is close to the γ-heme edge and is used for oxidation of ascorbate; the other is at the δ-heme edge and is used for binding of aromatic substrates [Gumiero et al., (2010) Arch. Biochem. Biophys. 500, 13-20]. In this work, we have examined the structural factors that control binding at the δ-heme edge by replacement of Ala134 in APX with a proline residue that is more commonly found in other class II and III peroxidases. Kinetic data indicate that replacement of Ala134 by proline has only a small effect on the catalytic mechanism, or the oxidation of ascorbate or guaiacol. Chemical modification with phenylhydrazine indicates that heme accessibility close to the δ-heme edge is only minorly affected by the substitution. We conclude that the A134P mutation alone is not enough to substantially affect the reactivity of APX towards aromatic substrates bound at the δ-heme edge. The data are relevant to the recent application of APX (APEX) in cellular imaging.


Assuntos
Alanina/metabolismo , Ascorbato Peroxidases/metabolismo , Alanina/genética , Ácido Ascórbico/metabolismo , Catálise , Cromatografia Líquida de Alta Pressão , Guaiacol/metabolismo , Heme/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Prolina/genética , Especificidade por Substrato
20.
Acc Chem Res ; 51(2): 427-435, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29327921

RESUMO

Aerobic organisms have evolved to activate oxygen from the atmosphere, which allows them to catalyze the oxidation of different kinds of substrates. This activation of oxygen is achieved by a metal center (usually iron or copper) buried within a metalloprotein. In the case of iron-containing heme enzymes, the activation of oxygen is achieved by formation of transient iron-oxo (ferryl) intermediates; these intermediates are called Compound I and Compound II. The Compound I and II intermediates were first discovered in the 1930s in horseradish peroxidase, and it is now known that these same species are used across the family of heme enzymes, which include all of the peroxidases, the heme catalases, the P450s, cytochrome c oxidase, and NO synthase. Many years have passed since the first observations, but establishing the chemical nature of these transient ferryl species remains a fundamental question that is relevant to the reactivity, and therefore the usefulness, of these species in biology. This Account summarizes experiments that were conceived and conducted at Leicester and presents our ideas on the chemical nature, stability, and reactivity of these ferryl heme species. We begin by briefly summarizing the early milestones in the field, from the 1940s and 1950s. We present comparisons between the nature and reactivity of the ferryl species in horseradish peroxidase, cytochrome c peroxidase, and ascorbate peroxidase; and we consider different modes of electron delivery to ferryl heme, from different substrates in different peroxidases. We address the question of whether the ferryl heme is best formulated as an (unprotonated) FeIV═O or as a (protonated) FeIV-OH species. A range of spectroscopic approaches (EXAFS, resonance Raman, Mossbauer, and EPR) have been used over many decades to examine this question, and in the last ten years, X-ray crystallography has also been employed. We describe how information from all of these studies has blended together to create an overall picture, and how the recent application of neutron crystallography has directly identified protonation states and has helped to clarify the precise nature of the ferryl heme in cytochrome c peroxidase and ascorbate peroxidase. We draw comparisons between the Compound I and Compound II species that we have observed in peroxidases with those found in other heme systems, notably the P450s, highlighting possible commonality across these heme ferryl systems. The identification of proton locations from neutron structures of these ferryl species opens the door for understanding the proton translocations that need to occur during O-O bond cleavage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA