Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34944825

RESUMO

The purpose of this work was to investigate whether minibeam therapy with heavy ions might offer improvements of the therapeutic ratio for the treatment of human brain cancers. To assess neurotoxicity, we irradiated normal juvenile rats using 120 MeV lithium-7 ions at an absorbed integral dose of 20 Gy. Beams were configured either as a solid parallel circular beam or as an array of planar parallel minibeams having 300-micron width and 1-mm center-to-center spacing within a circular array. We followed animals for 6 months after treatment and utilized behavioral testing and immunohistochemical studies to investigate the resulting cognitive impairment and chronic pathologic changes. We found both solid-beam therapy and minibeam therapy to result in cognitive impairment compared with sham controls, with no apparent reduction in neurotoxicity using heavy ion minibeams instead of solid beams under the conditions of this study.

2.
Neurobiol Pain ; 10: 100076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820549

RESUMO

Pain and cognitive decline increase with age. In particular, there is a troubling relationship between dementia and pain, with some studies showing higher prevalence and inadequate treatment of pain in this population. Alzheimer's disease (AD) is one of the most common causes of dementia in older adults. Amyloid plaques are a hallmark of AD. The downstream processes these plaques promote are believed to affect neuronal and glial health and activity. There is a need to better understand how the neuropathological changes of AD shape neural activity and pain sensitivity. Here, we use the 5XFAD mouse model, in which dense amyloid accumulations occur at early ages, and in which previous studies reported signs of cognitive decline. We hypothesized that 5XFAD mice develop sensory and pain processing dysfunctions. Although amyloid burden was high throughout the brain, including in regions involved with sensory processing, we identified no functionally significant differences in reflexive or spontaneous signs of pain. Furthermore, expected signs of cognitive decline were modest; a finding consistent with variable results in the literature. These data suggest that models recapitulating other pathological features of Alzheimer's disease might be better suited to studying differences in pain perception in this disease.

3.
J Neurosci ; 40(17): 3424-3442, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32217613

RESUMO

The parabrachial (PB) complex mediates both ascending nociceptive signaling and descending pain modulatory information in the affective/emotional pain pathway. We have recently reported that chronic pain is associated with amplified activity of PB neurons in a rat model of neuropathic pain. Here we demonstrate that similar activity amplification occurs in mice, and that this is related to suppressed inhibition to lateral parabrachial (LPB) neurons from the CeA in animals of either sex. Animals with pain after chronic constriction injury of the infraorbital nerve (CCI-Pain) displayed higher spontaneous and evoked activity in PB neurons, and a dramatic increase in after-discharges, responses that far outlast the stimulus, compared with controls. LPB neurons in CCI-Pain animals showed a reduction in inhibitory, GABAergic inputs. We show that, in both rats and mice, LPB contains few GABAergic neurons, and that most of its GABAergic inputs arise from CeA. These CeA GABA neurons express dynorphin, somatostatin, and/or corticotropin releasing hormone. We find that the efficacy of this CeA-LPB pathway is suppressed in chronic pain. Further, optogenetically stimulating this pathway suppresses acute pain, and inhibiting it, in naive animals, evokes pain behaviors. These findings demonstrate that the CeA-LPB pathway is critically involved in pain regulation, and in the pathogenesis of chronic pain.SIGNIFICANCE STATEMENT We describe a novel pathway, consisting of inhibition by dynorphin, somatostatin, and corticotropin-releasing hormone-expressing neurons in the CeA that project to the parabrachial nucleus. We show that this pathway regulates the activity of pain-related neurons in parabrachial nucleus, and that, in chronic pain, this inhibitory pathway is suppressed, and that this suppression is causally related to pain perception. We propose that this amygdalo-parabrachial pathway is a key regulator of both chronic and acute pain, and a novel target for pain relief.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Dor Crônica/fisiopatologia , Neuralgia/fisiopatologia , Percepção da Dor/fisiologia , Núcleos Parabraquiais/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Vias Neurais/fisiopatologia , Neurônios/fisiologia , Medição da Dor , Limiar da Dor/fisiologia
4.
Neurobiol Pain ; 6: 100033, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223137

RESUMO

All treatments are given in a context, suggesting that conditioning cues may significantly influence therapeutic outcomes. We tested the hypothesis that context affects placebo analgesia in rodents. To produce neuropathic pain in rats, we performed chronic constriction injury of the infraorbital nerve. We then treated the rats daily, over a seven day period, with injections of either fentanyl or saline, with or without associated conditioning cues; a fourth group received no treatment. On the eighth day, we replaced fentanyl with saline to test for conditioned placebo analgesia. We tested the effects of treatment by measuring sensitivity to mechanical stimuli and grimace scale scores. We found no significant differences in either of these outcomes among the four experimental groups. These findings suggest that chronic, neuropathic pain in rats may not be susceptible to placebo analgesia.

5.
Neurobiol Pain ; 3: 22-30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29862375

RESUMO

The parabrachial (PB) complex mediates both ascending nociceptive signaling and descending pain modulatory information in the affective/emotional pain pathway. We hypothesized that PB hyperactivity influences chronic pain behavior after trigeminal nerve injury in rats. Following induction of neuropathic pain using the chronic constriction injury of the infraorbital nerve (CCI-ION) model, rats displayed spontaneous markers of pain and mechanical hyperalgesia extending beyond the receptive field of the injured nerve. PB neurons recorded from rats with CCI-ION displayed amplified activity, manifesting as significantly longer responses to sensory stimuli, compared to shams. These findings suggest that chronic neuropathic pain involves PB hyperactivity.

6.
J Neurosci ; 37(47): 11431-11440, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29066554

RESUMO

Pain perception is strongly influenced by descending pathways from "higher" brain centers that regulate the activity of spinal circuits. In addition to the extensively studied descending system originating from the medulla, the neocortex provides dense anatomical projections that directly target neurons in the spinal cord and the spinal trigeminal nucleus caudalis (SpVc). Evidence exists that these corticotrigeminal pathways may modulate the processing of nociceptive inputs by SpVc, and regulate pain perception. We demonstrate here, with anatomical and optogenetic methods, and using both rats and mice (of both sexes), that corticotrigeminal axons densely innervate SpVc, where they target and directly activate inhibitory and excitatory neurons. Electrophysiological recordings reveal that stimulation of primary somatosensory cortex potently suppresses SpVc responses to noxious stimuli and produces behavioral hypoalgesia. These findings demonstrate that the corticotrigeminal pathway is a potent modulator of nociception and a potential target for interventions to alleviate chronic pain.SIGNIFICANCE STATEMENT Many chronic pain conditions are resistant to conventional therapy. Promising new approaches to pain management capitalize on the brain's own mechanisms for controlling pain perception. Here we demonstrate that cortical neurons directly innervate the brainstem to drive feedforward inhibition of nociceptive neurons. This corticotrigeminal pathway suppresses the activity of these neurons and produces analgesia. This corticotrigeminal pathway may constitute a therapeutic target for chronic pain.


Assuntos
Dor Crônica/fisiopatologia , Nociceptividade , Córtex Somatossensorial/fisiologia , Núcleos do Trigêmeo/fisiologia , Animais , Feminino , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/fisiologia , Córtex Somatossensorial/citologia , Núcleos do Trigêmeo/citologia
7.
Pain ; 158(7): 1366-1372, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28426550

RESUMO

Changes in chloride reversal potential in rat spinal cord neurons have previously been associated with persistent pain in nerve injury and inflammation models. These changes correlate with a decrease in the expression of the potassium chloride transporter, KCC2, and with increases in neuronal excitability. Here, we test the hypothesis that similar changes occur in mice with neuropathic pain induced by chronic constriction injury of the trigeminal infraorbital nerve (CCI-ION). This model allows us to distinguish an acute pain phase (3-5 days after injury) from a persistent pain phase (12-14 days after CCI-ION). Chronic constriction injury of the trigeminal infraorbital nerve induced significant decreases in mechanical pain thresholds in both the acute and persistent phases. To estimate GABAA reversal potentials in neurons from trigeminal nucleus caudalis, we obtained perforated patch recordings in vitro. GABAA reversal potential decreased by 8% during the acute phase in unidentified neurons, but not in GABAergic interneurons. However, at 12 to 14 days after CCI-ION, GABAA reversal potential recovered to normal values. Quantitative real-time polymerase chain reaction analysis revealed no significant changes, at either 3 to 5 days or 12 to 14 days after CCI-ION, in either KCC2 or NKCC1. These findings suggest that CCI-ION in mice results in transient and modest changes in chloride reversal potentials, and that these changes may not persist during the late phase. This suggests that, in the mouse model of CCI-ION, chloride dysregulation may not have a prominent role in the central mechanisms leading to the maintenance of chronic pain.


Assuntos
Neuralgia/metabolismo , Neurônios/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Simportadores/metabolismo , Núcleos do Trigêmeo/metabolismo , Animais , Cloretos/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Neuralgia/etiologia , Limiar da Dor/fisiologia , Traumatismos dos Nervos Periféricos/complicações , Cotransportadores de K e Cl-
8.
Neurobiol Pain ; 2: 13-17, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29450305

RESUMO

The limited success in translating basic science findings into effective pain management therapies reflects, in part, the difficulty in reliably assessing pain in experimental animals. This shortcoming is particularly acute in the field of chronic, ongoing pain. Quantitative analysis of facial expressions-the grimace score-was introduced as a promising tool, however, it is thought to reliably assess only pain of short or medium duration (minutes to hours). Here, we test the hypothesis that grimace scores are a reliable metric of ongoing neuropathic pain, by testing the prediction that chronic constriction injury of the infraorbital nerve (CCI-ION) will evoke significant increases in grimace scale scores. Mice and rats were subjected to CCI-ION, and tested for changes in mechanical hypersensitivity and in grimace scores, 10 or more days after surgery. Both rats and mice with CCIION had significantly higher grimace scores, and significantly lower thresholds for withdrawal from mechanical stimuli applied to the face, compared to sham-operated animals. Fentanyl reversed the changes in rat grimace scale scores, suggesting that these scores reflect pain perception. These findings validate the grimace scale as a reliable and sensitive metric for the assessment of ongoing pain in a rodent model of chronic, trigeminal neuropathic pain.

9.
Neurotherapeutics ; 10(3): 520-38, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23775067

RESUMO

Spinal cord injury (SCI) causes not only sensorimotor and cognitive deficits, but frequently also severe chronic pain that is difficult to treat (SCI pain). We previously showed that hyperesthesia, as well as spontaneous pain induced by electrolytic lesions in the rat spinothalamic tract, is associated with increased spontaneous and sensory-evoked activity in the posterior thalamic nucleus (PO). We have also demonstrated that rodent impact SCI increases cell cycle activation (CCA) in the injury region and that post-traumatic treatment with cyclin dependent kinase inhibitors reduces lesion volume and motor dysfunction. Here we examined whether CCA contributes to neuronal hyperexcitability of PO and hyperpathia after rat contusion SCI, as well as to microglial and astroglial activation (gliopathy) that has been implicated in delayed SCI pain. Trauma caused enhanced pain sensitivity, which developed weeks after injury and was correlated with increased PO neuronal activity. Increased CCA was found at the thoracic spinal lesion site, the lumbar dorsal horn, and the PO. Increased microglial activation and cysteine-cysteine chemokine ligand 21 expression was also observed in the PO after SCI. In vitro, neurons co-cultured with activated microglia showed up-regulation of cyclin D1 and cysteine-cysteine chemokine ligand 21 expression. In vivo, post-injury treatment with a selective cyclin dependent kinase inhibitor (CR8) significantly reduced cell cycle protein induction, microglial activation, and neuronal activity in the PO nucleus, as well as limiting chronic SCI-induced hyperpathia. These results suggest a mechanistic role for CCA in the development of SCI pain, through effects mediated in part by the PO nucleus. Moreover, cell cycle modulation may provide an effective therapeutic strategy to improve reduce both hyperpathia and motor dysfunction after SCI.


Assuntos
Ciclo Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Hiperestesia/etiologia , Hiperestesia/patologia , Núcleos Posteriores do Tálamo/fisiopatologia , Traumatismos da Medula Espinal/complicações , Potenciais de Ação/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ciclinas/farmacologia , Ciclinas/uso terapêutico , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Seguimentos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/tratamento farmacológico , Gliose/etiologia , Masculino , Microglia/química , Microglia/metabolismo , Microglia/patologia , Fibras Nervosas Amielínicas/patologia , Neurônios/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Núcleos Posteriores do Tálamo/efeitos dos fármacos , Núcleos Posteriores do Tálamo/patologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA