Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132246, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735608

RESUMO

DNA origami is a cutting-edge nanotechnology approach that creates precise and detailed 2D and 3D nanostructures. The crucial feature of DNA origami is how it is created, which enables precise control over its size and shape. Biocompatibility, targetability, programmability, and stability are further advantages that make it a potentially beneficial technique for a variety of applications. The preclinical studies of sophisticated programmable nanomedicines and nanodevices that can precisely respond to particular disease-associated triggers and microenvironments have been made possible by recent developments in DNA origami. These stimuli, which are endogenous to the targeted disorders, include protein upregulation, pH, redox status, and small chemicals. Oncology has traditionally been the focus of the majority of past and current research on this subject. Therefore, in this comprehensive review, we delve into the intricate world of DNA origami, exploring its defining features and capabilities. This review covers the fundamental characteristics of DNA origami, targeting DNA origami to cells, cellular uptake, and subcellular localization. Throughout the review, we emphasised on elucidating the imperative for such a therapeutic platform, especially in addressing the complexities of cardiovascular disease (CVD). Moreover, we explore the vast potential inherent in DNA origami technology, envisioning its promising role in the realm of CVD treatment and beyond.


Assuntos
Doenças Cardiovasculares , DNA , Nanoestruturas , Humanos , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/tratamento farmacológico , DNA/química , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Animais , Nanotecnologia/métodos , Nanomedicina/métodos , Conformação de Ácido Nucleico
2.
Polymers (Basel) ; 14(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36433104

RESUMO

An amorphous solid dispersion (ASD) of carvedilol (CVL) was prepared via the solvent evaporation method, using cellulose derivatives as polymeric precipitation inhibitors (PPIs). The prepared ASDs existed in the amorphous phase, as revealed by X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). The Fourier-transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) results confirmed the compatibility between CVL and the polymers used. The ASDs characteristics were evaluated, with no change in viscosity, a pH of 6.8, a polydispersity index of 0.169, a particle size of 423-450 nm, and a zeta potential of 3.80 mV. Crystal growth inhibition was assessed for 180 min via an infusion precipitation study in simulated intestinal fluid (SIF). The interactions between the drug and polymers were established in great detail, using nuclear magnetic resonance (NMR) spectroscopy, nuclear Overhauser effect spectroscopy (NOESY), and Raman spectroscopy studies. Dielectric analysis was employed to determine the drug-polymer interactions between ion pairs and to understand ion transport behavior. In vivo oral kinetics and irritation studies performed on Wistar rats have demonstrated promising biocompatibility, stability, and the enhanced bioavailability of CVL. Collectively, the stable ASDs of CVL were developed using cellulose polymers as PPIs that would inhibit drug precipitation in the gastrointestinal tract and would aid in achieving higher in vivo drug stability and bioavailability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA