Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 173(Pt 2): 113479, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803803

RESUMO

Alternate proteins are gaining popularity as a more sustainable and environmentally friendly alternative to animal-based proteins. These proteins are often considered healthier and are suitable for people following a vegetarian or vegan diet. Alternative proteins can be recovered from natural sources like legumes, grains, nuts, and seeds, while single cell proteins (mycoproteins), and algal proteins are being developed using cutting-edge technology to grow fungus, yeast and algal cells in a controlled environment, creating a more sustainable source of protein. Although, the demand for alternative protein products is increasing, there still happens to be a large gap in use among the general consumers mainly stemming from its lower bioavailability, lack of nutritional equivalency and reduced digestibility compared to animal proteins. The focus of the review is to emphasize on various sources and technologies for recovering alternative proteins for vegan diets. The review discusses physicochemical properties of alternative proteins and emphasise on the role of various processing technologies that can change the digestibility and bioavailability of these proteins. It further accentuates the nutritional equivalency and environmental sustainability of alternative protein against the conventional proteins from animals. The food laws surrounding alternative proteins as well as the commercial potential and consumer acceptance of alternative protein products are also highlighted. Finally, key challenges to improve the consumer acceptability and market value of plant-based proteins would be in achieving nutrient equivalency and enhance bioavailability and digestibility while maintaining the same physicochemical properties, taste, texture, as animal proteins, has also been highlighted.


Assuntos
Dieta Vegana , Proteínas de Plantas , Humanos , Plantas , Verduras
2.
Mar Drugs ; 21(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37233509

RESUMO

The present study investigates the molecular characteristics of fucoidan obtained from the brown Irish seaweed Ascophyllum nodosum, employing hydrothermal-assisted extraction (HAE) followed by a three-step purification protocol. The dried seaweed biomass contained 100.9 mg/g of fucoidan, whereas optimised HAE conditions (solvent, 0.1N HCl; time, 62 min; temperature, 120 °C; and solid to liquid ratio, 1:30 (w/v)) yielded 417.6 mg/g of fucoidan in the crude extract. A three-step purification of the crude extract, involving solvents (ethanol, water, and calcium chloride), molecular weight cut-off filter (MWCO; 10 kDa), and solid-phase extraction (SPE), resulted in 517.1 mg/g, 562.3 mg/g, and 633.2 mg/g of fucoidan (p < 0.05), respectively. In vitro antioxidant activity, as determined by 1,1-diphenyl-2-picryl-hydrazyl radical scavenging and ferric reducing antioxidant power assays, revealed that the crude extract exhibited the highest antioxidant activity compared to the purified fractions, commercial fucoidan, and ascorbic acid standard (p < 0.05). The molecular attributes of biologically active fucoidan-rich MWCO fraction was characterised by quadruple time of flight mass spectrometry and Fourier-transform infrared (FTIR) spectroscopy. The electrospray ionisation mass spectra of purified fucoidan revealed quadruply ([M+4H]4+) and triply ([M+3H]3+) charged fucoidan moieties at m/z 1376 and m/z 1824, respectively, and confirmed the molecular mass 5444 Da (~5.4 kDa) from multiply charged species. The FTIR analysis of both purified fucoidan and commercial fucoidan standard exhibited O-H, C-H, and S=O stretching which are represented by bands at 3400 cm-1, 2920 cm-1, and 1220-1230 cm-1, respectively. In conclusion, the fucoidan recovered from HAE followed by a three-step purification process was highly purified; however, purification reduced the antioxidant activity compared to the crude extract.


Assuntos
Ascophyllum , Alga Marinha , Antioxidantes/química , Ascophyllum/química , Alga Marinha/química , Irlanda , Polissacarídeos/química , Espectrometria de Massas por Ionização por Electrospray
3.
Biotechnol Adv ; 66: 108168, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37146921

RESUMO

Grasses, legumes and green plant wastes represent a ubiquitous feedstock for developing a bioeconomy in regions across Europe. These feedstocks are often an important source of ruminant feed, although much remains unused or underutilised. In addition to proteins, these materials are rich in fibres, sugars, minerals and other components that could also be used as inputs for bio-based product development. Green Biorefinery processes and initiatives are being developed to better capitalise on the potential of these feedstocks to produce sustainable food, feed, materials and energy in an integrated way. Such systems may support a more sustainable primary production sector, enable the valorisation of green waste streams, and provide new business models for farmers. This review presents the current developments in Green Biorefining, focusing on a broad feedstock and product base to include different models of Green Biorefinery. It demonstrates the potential and wide applicability of Green Biorefinery systems, the range of bio-based product opportunities and highlights the way forward for their broader implementation. While the potential for new products is extensive, quality control approval will be required prior to market entry.


Assuntos
Fabaceae , Poaceae , Alimentos , Biocombustíveis , Biomassa
4.
J Anim Sci Biotechnol ; 13(1): 39, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35369884

RESUMO

BACKGROUND: Dietary supplementation with a fucoidan-rich Ascophyllum nodosum extract (ANE), possessing an in vitro anti-Salmonella Typhimurium activity could be a promising on-farm strategy to control Salmonella infection in pigs. The objectives of this study were to: 1) evaluate the anti-S. Typhimurium activity of ANE (containing 46.6% fucoidan, 18.6% laminarin, 10.7% mannitol, 4.6% alginate) in vitro, and; 2) compare the effects of dietary supplementation with ANE and Zinc oxide (ZnO) on growth performance, Salmonella shedding and selected gut parameters in naturally infected pigs. This was established post-weaning (newly weaned pig experiment) and following regrouping of post-weaned pigs and experimental re-infection with S. Typhimurium (challenge experiment). RESULTS: In the in vitro assay, increasing ANE concentrations led to a linear reduction in S. Typhimurium counts (P <  0.05). In the newly weaned pig experiment (12 replicates/treatment), high ANE supplementation increased gain to feed ratio, similar to ZnO supplementation, and reduced faecal Salmonella counts on d 21 compared to the low ANE and control groups (P <  0.05). The challenge experiment included thirty-six pigs from the previous experiment that remained on their original dietary treatments (control and high ANE groups with the latter being renamed to ANE group) apart from the ZnO group which transitioned onto a control diet on d 21 (ZnO-residual group). These dietary treatments had no effect on performance, faecal scores, Salmonella shedding or colonic and caecal Salmonella counts (P > 0.05). ANE supplementation decreased the Enterobacteriaceae counts compared to the control. Enterobacteriaceae counts were also reduced in the ZnO-residual group compared to the control (P <  0.05). ANE supplementation decreased the expression of interleukin 22 and transforming growth factor beta 1 in the ileum compared to the control (P <  0.05). CONCLUSIONS: ANE supplementation was associated with some beneficial changes in the composition of the colonic microbiota, Salmonella shedding, and the expression of inflammatory genes associated with persistent Salmonella infection.

5.
Mar Drugs ; 19(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071764

RESUMO

This study aims to explore novel extraction technologies (ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), ultrasound-microwave-assisted extraction (UMAE), hydrothermal-assisted extraction (HAE) and high-pressure-assisted extraction (HPAE)) and extraction time post-treatment (0 and 24 h) for the recovery of phytochemicals and associated antioxidant properties from Fucus vesiculosus and Pelvetia canaliculata. When using fixed extraction conditions (solvent: 50% ethanol; extraction time: 10 min; algae/solvent ratio: 1/10) for all the novel technologies, UAE generated extracts with the highest phytochemical contents from both macroalgae. The highest yields of compounds extracted from F. vesiculosus using UAE were: total phenolic content (445.0 ± 4.6 mg gallic acid equivalents/g), total phlorotannin content (362.9 ± 3.7 mg phloroglucinol equivalents/g), total flavonoid content (286.3 ± 7.8 mg quercetin equivalents/g) and total tannin content (189.1 ± 4.4 mg catechin equivalents/g). In the case of the antioxidant activities, the highest DPPH activities were achieved by UAE and UMAE from both macroalgae, while no clear pattern was recorded in the case of FRAP activities. The highest DPPH scavenging activities (112.5 ± 0.7 mg trolox equivalents/g) and FRAP activities (284.8 ± 2.2 mg trolox equivalents/g) were achieved from F. vesiculosus. Following the extraction treatment, an additional storage post-extraction (24 h) did not improve the yields of phytochemicals or antioxidant properties of the extracts.


Assuntos
Antioxidantes/isolamento & purificação , Técnicas de Química Analítica/métodos , Phaeophyceae/química , Compostos Fitoquímicos/isolamento & purificação , Polifenóis/isolamento & purificação , Antioxidantes/análise , Antioxidantes/química , Fucus/química , Temperatura Alta , Micro-Ondas , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Polifenóis/análise , Polifenóis/química , Pressão , Ondas Ultrassônicas , Água
6.
Waste Manag ; 105: 240-247, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32088570

RESUMO

This paper deals with the investigation of ultrasound (US) pretreatment of brewer's spent grain (BSG) as a means of releasing fermentable sugars, and the subsequent production of ethanol from this lignocellulosic biomass. Using response surface methodology (RSM), the influence of US power, time, temperature and biomass loading on fermentable sugar yield from BSG was studied. The optimal conditions were found to be 20% US power, 60 min, 26.3 °C, and 17.3% w/v of biomass in water. Under these conditions, an approximate 2.1-fold increase in reducing sugar yield (325 ± 6 mg/g of biomass) was achieved, relative to untreated BSG (151.1 ± 10 mg/g of biomass). In contrast to acid or alkaline pretreatment approaches, the use of water obviated the need for neutralization for the recovery of sugars. The characterization of native and pretreated BSG was performed by HPLC, FTIR, SEM and DSC. Fermentation studies using S. cerevisiae growing on pretreated BSG resulted in a conversion of 66% of the total sugar content ininto ethanol with an ethanol content of 17.73 ± 2 g/ 100 g of pretreated BSG. These results suggest that ultrasound pretreatment is a promising technology for increased valorization of BSG as a feedstock for production of bioethanol, and points ton the need for further work in this area.


Assuntos
Saccharomyces cerevisiae , Sonicação , Biomassa , Grão Comestível , Fermentação
7.
Foods ; 8(11)2019 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-31744199

RESUMO

In this study, spent coffee waste (SCW) was used as the sole carbon source for xylanase production in solid state fermentation mode using Aspergillus niger. A Box-Behnken design was constructed using three parameters viz. temperature, initial moisture content, and log number of spores to determine the optimal fermentation condition. The best fermentation conditions for xylanase production were found to be incubation at 30 °C with an initial moisture content of 70% and using an inoculum of 6.5 × 106 spores/g of dry SCW. Furthermore, the design of experiments revealed that maintaining a medium composition of 0.2 g of yeast extract, 0.04 g of K2HPO4, and 0.03 g of MgSO4 increased xylanase production. Under optimised solid-state fermentation conditions an enzyme activity of 6495.6 IU/g of dry SCW was recorded, which was approximately 1.39-fold higher than that of control (4649 IU/g of dry SCW). The efficacy of the purified xylanase as a juice enrichment agent for strawberry, blueberry, and raspberry pulp was tested.

8.
Bioresour Technol ; 282: 520-524, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30902485

RESUMO

In this study, a new pre-treatment method based on novel non-thermal plasma technology was developed to improve the enzymatic hydrolysis of brewer's spent grain (BSG) and subsequent bioethanol production. A submerged dielectric barrier discharge plasma reactor system was applied for this purpose. Pre-treatments were performed by taking into account variables including; voltages (22 kV, 25 kV and 28 kV), solvent (acid, alkali and water) and time (5, 10, 15 min). The resulting treated biomass was subjected to enzymatic hydrolysis. A 2.14-fold increase in yield of the reducing sugar was achieved post hydrolysis when the biomass was treated in water for 10 min at a voltage setting of 28 kV (162.90 mg/g of BSG) compared to control (75.94 mg/g of BSG). This research suggests that subjecting lignocellulose to plasma discharges can enhance the efficiency of enzymatic hydrolysis. A high ethanol titre was also obtained upon fermentation of the hydrolysate (25.062 g/l).


Assuntos
Grão Comestível/metabolismo , Bebidas Alcoólicas , Biomassa , Etanol/metabolismo , Fermentação , Hidrólise , Lignina/metabolismo
9.
Food Chem ; 285: 363-368, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797358

RESUMO

Food processing techniques are inevitable technological measures that aim to increase and sustain the quality of agricultural products. This is traditionally achieved by the application of heat or exposure to chemicals. Since the advent of X-rays, food scientists have been evaluating the prospect of employing ionising radiations for pest removal, sprouting inhibition and shelf-life extension of food products. Gamma radiation, electron beam and X-rays have emerged as the favoured methods of food irradiation in recent years. Several decades of research have endeavoured to determine the advantage and disadvantage of subjecting food materials to radiation. This has resulted in several international bodies, such as WHO and FAO, certifying that food irradiation is a safe processing method. This review article provides an insight of the various effects of irradiation on food with respect to nutritional quality, shelf-life extension, toxicological aspects, legislation pertaining to food irradiation and global acceptability.


Assuntos
Irradiação de Alimentos/legislação & jurisprudência , Irradiação de Alimentos/métodos , Inocuidade dos Alimentos , Manipulação de Alimentos/métodos , Conservantes de Alimentos , Armazenamento de Alimentos , Raios gama , Humanos , Valor Nutritivo , Opinião Pública , Raios X
10.
Bioengineering (Basel) ; 5(4)2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30373279

RESUMO

Agro-industrial waste is highly nutritious in nature and facilitates microbial growth. Most agricultural wastes are lignocellulosic in nature; a large fraction of it is composed of carbohydrates. Agricultural residues can thus be used for the production of various value-added products, such as industrially important enzymes. Agro-industrial wastes, such as sugar cane bagasse, corn cob and rice bran, have been widely investigated via different fermentation strategies for the production of enzymes. Solid-state fermentation holds much potential compared with submerged fermentation methods for the utilization of agro-based wastes for enzyme production. This is because the physical⁻chemical nature of many lignocellulosic substrates naturally lends itself to solid phase culture, and thereby represents a means to reap the acknowledged potential of this fermentation method. Recent studies have shown that pretreatment technologies can greatly enhance enzyme yields by several fold. This article gives an overview of how agricultural waste can be productively harnessed as a raw material for fermentation. Furthermore, a detailed analysis of studies conducted in the production of different commercially important enzymes using lignocellulosic food waste has been provided.

11.
Bioresour Technol ; 248(Pt A): 272-279, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28648256

RESUMO

In this study, brewer's spent grain (BSG) was subjected to a range pretreatments to study the effect on reducing sugar yield. Glucose and xylose were found to be the predominant sugars in BSG. Brewers spent grain was high in cellulose (19.21g/100g of BSG) and lignin content (30.84g/100g of BSG). Microwave assisted alkali (MAA) pretreatment was found to be the most effective pretreatment for BSG, where the pretreatment was conducted at 400W for 60s. A maximum reducing yield was observed with high biomass loading (1g/10ml), cellulase (158.76µl/10ml), hemicellulase (153.3µl/10ml), pH (5.4) and an incubation time (120h). Upon enzymatic hydrolysis, MAA pretreated BSG yielded 228.25mg of reducing sugar/g of BSG which was 2.86-fold higher compared to native BSG (79.67mg/g of BSG); simultaneously BSG was de-lignified significantly. The changes in functional groups, crystallinity and thermal behaviour was studies by means of FTIR, XRD and DSC, respectively.


Assuntos
Grão Comestível , Hidrólise , Biomassa , Celulose , Lignina
12.
Bioresour Technol ; 243: 327-334, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28683385

RESUMO

In this study, a novel pretreatment for spent coffee waste (SCW) has been proposed which combines two techniques viz. atmospheric air plasma and FeCl3 to create a superior pretreatment that involves Fenton chemistry. The pretreatment was optimised employing Taguchi Design of Experiments, and five parameters were taken into consideration viz. biomass loading, FeCl3 concentration, H2SO4 concentration, plasma discharge voltage and treatment time. The composition analysis of the pretreated SCW revealed substantial amounts of lignin removal, with a maximum for process conditions of 70kV for 2min in an acidic environment containing 1% H2SO4. FTIR, XRD and DSC were performed to characterise the samples. The pretreated SCW after enzymatic hydrolysis yielded 0.496g of reducing sugar/g of SCW. The hydrolysate was subjected to fermentation by S. cerevisiae and led to the production of 18.642g/l of ethanol with a fermentation efficiency of 74%, which was a two fold increase in yield compared to the control.


Assuntos
Cloretos , Compostos Férricos , Lignina , Saccharomyces cerevisiae , Biomassa , Etanol , Fermentação , Hidrólise
13.
Bioresour Technol ; 239: 276-284, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28531852

RESUMO

In the present study, eight different pretreatments of varying nature (physical, chemical and physico-chemical) followed by a sequential, combinatorial pretreatment strategy was applied to spent coffee waste to attain maximum sugar yield. Pretreated samples were analysed for total reducing sugar, individual sugars and generation of inhibitory compounds such as furfural and hydroxymethyl furfural (HMF) which can hinder microbial growth and enzyme activity. Native spent coffee waste was high in hemicellulose content. Galactose was found to be the predominant sugar in spent coffee waste. Results showed that sequential pretreatment yielded 350.12mg of reducing sugar/g of substrate, which was 1.7-fold higher than in native spent coffee waste (203.4mg/g of substrate). Furthermore, extensive delignification was achieved using sequential pretreatment strategy. XRD, FTIR, and DSC profiles of the pretreated substrates were studied to analyse the various changes incurred in sequentially pretreated spent coffee waste as opposed to native spent coffee waste.


Assuntos
Carboidratos , Café , Hidrólise , Eliminação de Resíduos
14.
Bioresour Technol ; 224: 680-687, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27866804

RESUMO

In the present study, novel pre-treatment for spent coffee waste (SCW) has been proposed which utilises the superior oxidising capacity of alkaline KMnO4 assisted by ultra-sonication. The pre-treatment was conducted for different exposure times (10, 20, 30 and 40min) using different concentrations of KMnO4 (1, 2, 3, 4, 5%w/v) at room temperature with solid/liquid ratio of 1:10. Pretreating SCW with 4% KMnO4 and exposing it to ultrasound for 20min resulted in 98% cellulose recovery and a maximum lignin removal of 46%. 1.7 fold increase in reducing sugar yield was obtained after enzymatic hydrolysis of KMnO4 pretreated SCW as compared to raw. SEM, XRD and FTIR analysis of the pretreated SCW revealed the various effects of pretreatment. Thermal behaviour of the pretreated substrate against the native biomass was also studied using DSC. Ultrasound-assisted potassium permanganate oxidation was found to be an effective pretreatment for SCW, and can be a used as a potential feedstock pretreatment strategy for bioethanol production.


Assuntos
Café/química , Permanganato de Potássio/química , Ultrassom/métodos , Álcalis/química , Biomassa , Carboidratos/química , Celulose/química , Hidrólise , Lignina/química , Sonicação , Temperatura
15.
Bioresour Technol ; 199: 92-102, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26277268

RESUMO

Lignocellulose is a generic term used to describe plant biomass. It is the most abundant renewable carbon resource in the world and is mainly composed of lignin, cellulose and hemicelluloses. Most of the food and food processing industry waste are lignocellulosic in nature with a global estimate of up to 1.3 billion tons/year. Lignocellulose, on hydrolysis, releases reducing sugars which is used for the production of bioethanol, biogas, organic acids, enzymes and biosorbents. However, structural conformation, high lignin content and crystalline cellulose hinder its use for value addition. Pre-treatment strategies facilitate the exposure of more cellulose and hemicelluloses for enzymatic hydrolysis. The present article confers about the structure of lignocellulose and how it influences enzymatic degradation emphasising the need for pre-treatments along with a comprehensive analysis and categorisation of the same. Finally, this article concludes with a detailed discussion on microbial/enzymatic inhibitors that arise post pre-treatment and strategies to eliminate them.


Assuntos
Indústria Alimentícia , Resíduos Industriais/análise , Lignina/química , Eliminação de Resíduos/métodos , Biomassa
16.
Trends Biotechnol ; 34(1): 58-69, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26645658

RESUMO

A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules.


Assuntos
Conservação dos Recursos Naturais , Indústria Alimentícia , Abastecimento de Alimentos , Resíduos Industriais
17.
Bioengineering (Basel) ; 3(4)2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28952592

RESUMO

Enzymes are of great importance in the industry due to their substrate and product specificity, moderate reaction conditions, minimal by-product formation and high yield. They are important ingredients in several products and production processes. Up to 30% of the total production cost of enzymes is attributed to the raw materials costs. The food industry expels copious amounts of processing waste annually, which is mostly lignocellulosic in nature. Upon proper treatment, lignocellulose can replace conventional carbon sources in media preparations for industrial microbial processes, such as enzyme production. However, wild strains of microorganisms that produce industrially important enzymes show low yield and cannot thrive on artificial substrates. The application of recombinant DNA technology and metabolic engineering has enabled researchers to develop superior strains that can not only withstand harsh environmental conditions within a bioreactor but also ensure timely delivery of optimal results. This article gives an overview of the current complications encountered in enzyme production and how accumulating food processing waste can emerge as an environment-friendly and economically feasible solution for a choice of raw material. It also substantiates the latest techniques that have emerged in enzyme purification and recovery over the past four years.

18.
Prep Biochem Biotechnol ; 43(7): 717-34, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23768115

RESUMO

The present study describes the usage of dried leafy biomass of mango (Mangifera indica) containing 26.3% (w/w) cellulose, 54.4% (w/w) hemicellulose, and 16.9% (w/w) lignin, as a substrate for bioethanol production from Zymomonas mobilis and Candida shehatae. The substrate was subjected to two different pretreatment strategies, namely, wet oxidation and an organosolv process. An ethanol concentration (1.21 g/L) was obtained with Z. mobilis in a shake-flask simultaneous saccharification and fermentation (SSF) trial using 1% (w/v) wet oxidation pretreated mango leaves along with mixed enzymatic consortium of Bacillus subtilis cellulase and recombinant hemicellulase (GH43), whereas C. shehatae gave a slightly higher (8%) ethanol titer of 1.31 g/L. Employing 1% (w/v) organosolv pretreated mango leaves and using Z. mobilis and C. shehatae separately in the SSF, the ethanol titers of 1.33 g/L and 1.52 g/L, respectively, were obtained. The SSF experiments performed with 5% (w/v) organosolv-pretreated substrate along with C. shehatae as fermentative organism gave a significantly enhanced ethanol titer value of 8.11 g/L using the shake flask and 12.33 g/L at the bioreactor level. From the bioreactor, 94.4% (v/v) ethanol was recovered by rotary evaporator with 21% purification efficiency.


Assuntos
Celulase/química , Etanol/síntese química , Mangifera/química , Folhas de Planta/química , Bacillus subtilis/enzimologia , Biomassa , Reatores Biológicos , Etanol/química , Fermentação , Hidrólise , Lignina/química , Polissacarídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Zymomonas
19.
Appl Biochem Biotechnol ; 167(6): 1475-88, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22383050

RESUMO

The enhancement of the biomass productivity of Escherichia coli cells harbouring the truncated 903 bp gene designated as glycoside hydrolase family 43 (GH43) from Clostridium thermocellum showing hemicellulase activity along with its further use in simultaneous saccharification and fermentation (SSF) process is described. (Phosphoric acid) H(3)PO(4)-acetone treatment and ammonia fibre expansion (AFEX) were the pretreatment strategies employed on the leafy biomass of mango, poplar, neem and asoka among various substrates owing to their high hemicellulose content. GH43 showed optimal activity at a temperature of 50 °C, pH 5.4 with stability over a pH range of 5.0-6.2. A 4-fold escalation in growth of the recombinant E. coli cells was observed when grown using repeated batch strategy in LB medium supplemented with glucose as co-substrate. Candida shehatae utilizing pentose sugars was employed for bioethanol production. AFEX pretreatment proved to be better over acid-acetone technique. The maximum ethanol concentration (1.44 g/L) was achieved for AFEX pretreated mango (1%, w/v) followed by poplar with an ethanol titre (1.32 g/L) in shake flask experiments. A 1.5-fold increase in ethanol titre (2.11 g/L) was achieved with mango (1%, w/v) in a SSF process using a table top 2-L bioreactor with 1 L working volume.


Assuntos
Clostridium thermocellum/metabolismo , Etanol/metabolismo , Fermentação , Glicosídeo Hidrolases/metabolismo , Sequência de Bases , Reatores Biológicos , Candida/metabolismo , Clonagem Molecular , Clostridium thermocellum/enzimologia , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Glicosídeo Hidrolases/genética , Hidrólise , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA