Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
iScience ; 27(4): 109568, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617564

RESUMO

The aim of this study was to analyze signaling pathways associated with differentially expressed messenger RNAs in people with restless legs syndrome (RLS). Seventeen RLS patients and 18 controls were enrolled. Coding RNA expression profiling of 12,857 gene transcripts by next-generation sequencing was performed. Enrichment analysis by pathfindR tool was carried-out, with p-adjusted ≤0.001 and fold-change ≥2.5. Nine main different network groups were significantly dysregulated in RLS: infections, inflammation, immunology, neurodegeneration, cancer, neurotransmission and biological, blood and metabolic mechanisms. Genetic predisposition plays a key role in RLS and evidence indicates its inflammatory nature; the high involvement of mainly neurotropic viruses and the TORCH complex might trigger inflammatory/immune reactions in genetically predisposed subjects and activate a series of biological pathways-especially IL-17, receptor potential channels, nuclear factor kappa-light-chain-enhancer of activated B cells, NOD-like receptor, mitogen-activated protein kinase, p53, mitophagy, and ferroptosis-involved in neurotransmitter mechanisms, synaptic plasticity, axon guidance, neurodegeneration, carcinogenesis, and metabolism.

2.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255780

RESUMO

Parkinson's disease (PD) stands as the most prevalent degenerative movement disorder, marked by the degeneration of dopaminergic neurons in the substantia nigra of the midbrain. In this study, we conducted a transcriptome analysis utilizing post mortem mRNA extracted from the substantia nigra of both PD patients and healthy control (CTRL) individuals. Specifically, we acquired eight samples from individuals with PD and six samples from CTRL individuals, with no discernible pathology detected in the latter group. RNA sequencing was conducted using the TapeStation 4200 system from Agilent Technologies. A total of 16,148 transcripts were identified, with 92 mRNAs displaying differential expression between the PD and control groups. Specifically, 33 mRNAs were significantly up-regulated, while 59 mRNAs were down-regulated in PD compared to the controls. The identification of statistically significant signaling pathways, with an adjusted p-value threshold of 0.05, unveiled noteworthy insights. Specifically, the enriched categories included cardiac muscle contraction (involving genes such as ATPase Na+/K+ transporting subunit beta 2 (ATP1B2), solute carrier family 8 member A1 (SLC8A1), and cytochrome c oxidase subunit II (COX2)), GABAergic synapse (involving GABA type A receptor-associated protein-like 1 (GABARAPL1), G protein subunit beta 5 (GNB5), and solute carrier family 38 member 2 (SLC38A2), autophagy (involving GABARAPL1 and tumor protein p53-inducible nuclear protein 2 (TP53INP2)), and Fc gamma receptor (FcγR) mediated phagocytosis (involving amphiphysin (AMPH)). These findings uncover new pathophysiological dimensions underlying PD, implicating genes associated with heart muscle contraction. This knowledge enhances diagnostic accuracy and contributes to the advancement of targeted therapies.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Análise em Microsséries , Perfilação da Expressão Gênica , Mesencéfalo , Substância Negra , Proteínas Nucleares
3.
PLoS One ; 19(1): e0293644, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165955

RESUMO

Small non-coding RNAs (ncRNAs), particularly miRNAs, play key roles in a plethora of biological processes both in health and disease. Although largely operative in the cytoplasm, emerging data indicate their shuttling in different subcellular compartments. Given the central role of mitochondria in cellular homeostasis, here we systematically profiled their small ncRNAs content across mouse tissues that largely rely on mitochondria functioning. The ubiquitous presence of piRNAs in mitochondria (mitopiRNA) of somatic tissues is reported for the first time, supporting the idea of a strong and general connection between mitochondria biology and piRNA pathways. Then, we found groups of tissue-shared and tissue-specific mitochondrial miRNAs (mitomiRs), potentially related to the "basic" or "cell context dependent" biology of mitochondria. Overall, this large data platform will be useful to deepen the knowledge about small ncRNAs processing and their governed regulatory networks contributing to mitochondria functions.


Assuntos
MicroRNAs , Pequeno RNA não Traduzido , Animais , Camundongos , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Citoplasma/metabolismo
4.
Cytotherapy ; 26(2): 145-156, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38099895

RESUMO

BACKGROUND AIMS: Whole tumor cell lysates (TCLs) obtained from cancer cells previously killed by treatments able to promote immunogenic cell death (ICD) can be efficiently used as a source of tumor-associated antigens for the development of highly efficient dendritic cell (DC)-based vaccines. Herein, the potential role of the interferon (IFN)-inducible protein phospholipid scramblase 1 (PLSCR1) in influencing immunogenic features of dying cancer cells and in enhancing DC-based vaccine efficiency was investigated. METHODS: PLSCR1 expression was evaluated in different mantle-cell lymphoma (MCL) cell lines following ICD induction by 9-cis-retinoic acid (RA)/IFN-α combination, and commercial kinase inhibitor was used to identify the signaling pathway involved in its upregulation. A Mino cell line ectopically expressing PLSCR1 was generated to investigate the potential involvement of this protein in modulating ICD features. Whole TCLs obtained from Mino overexpressing PLSCR1 were used for DC loading, and loaded DCs were employed for generation of tumor antigen-specific cytotoxic T lymphocytes. RESULTS: The ICD inducer RA/IFN-α combination promoted PLSCR1 expression through STAT1 activation. PLSCR1 upregulation favored pro-apoptotic effects of RA/IFN-α treatment and enhanced the exposure of calreticulin on cell surface. Moreover, DCs loaded with TCLs obtained from Mino ectopically expressing PLSCR1 elicited in vitro greater T-cell-mediated antitumor responses compared with DCs loaded with TCLs derived from Mino infected with empty vector or the parental cell line. Conversely, PLSCR1 knock-down inhibited the stimulating activity of DCs loaded with RA/IFN-α-treated TCLs to elicit cyclin D1 peptide-specific cytotoxic T lymphocytes. CONCLUSIONS: Our results indicate that PLSCR1 improved ICD-associated calreticulin exposure induced by RA/IFN-α and was clearly involved in DC-based vaccine efficiency as well, suggesting a potential contribution in the control of pathways associated to DC activation, possibly including those involved in antigen uptake and concomitant antitumor immune response activation.


Assuntos
Antineoplásicos , Vacinas , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Calreticulina/metabolismo , Morte Celular Imunogênica , Antineoplásicos/metabolismo , Antígenos de Neoplasias , Imunidade , Células Dendríticas , Vacinas/metabolismo
5.
Biomedicines ; 10(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36009442

RESUMO

Immunogenic cell death (ICD) in cancer represents a functionally unique therapeutic response that can induce tumor-targeting immune responses. ICD is characterized by the exposure and release of numerous damage-associated molecular patterns (DAMPs), which confer adjuvanticity to dying cancer cells. The spatiotemporally defined emission of DAMPs during ICD has been well described, whereas the epigenetic mechanisms that regulate ICD hallmarks have not yet been deeply elucidated. Here, we aimed to examine the involvement of miRNAs and their putative targets using well-established in vitro models of ICD. To this end, B cell lymphoma (Mino) and breast cancer (MDA-MB-231) cell lines were exposed to two different ICD inducers, the combination of retinoic acid (RA) and interferon-alpha (IFN-α) and doxorubicin, and to non ICD inducers such as gamma irradiation. Then, miRNA and mRNA profiles were studied by next generation sequencing. Co-expression analysis identified 16 miRNAs differentially modulated in cells undergoing ICD. Integrated miRNA-mRNA functional analysis revealed candidate miRNAs, mRNAs, and modulated pathways associated with Immune System Process (GO Term). Specifically, ICD induced a distinctive transcriptional signature hallmarked by regulation of antigen presentation, a crucial step for proper activation of immune system antitumor response. Interestingly, the major histocompatibility complex class I (MHC-I) pathway was upregulated whereas class II (MHC-II) was downregulated. Analysis of MHC-II associated transcripts and HLA-DR surface expression confirmed inhibition of this pathway by ICD on lymphoma cells. miR-4284 and miR-212-3p were the strongest miRNAs upregulated by ICD associated with this event and miR-212-3p overexpression was able to downregulate surface expression of HLA-DR. It is well known that MHC-II expression on tumor cells facilitates the recruitment of CD4+ T cells. However, the interaction between tumor MHC-II and inhibitory coreceptors on tumor-associated lymphocytes could provide an immunosuppressive signal that directly represses effector cytotoxic activity. In this context, MHC-II downregulation by ICD could enhance antitumor immunity. Overall, we found that the miRNA profile was significantly altered during ICD. Several miRNAs are predicted to be involved in the regulation of MHC-I and II pathways, whose implication in ICD is demonstrated herein for the first time, which could eventually modulate tumor recognition and attack by the immune system.

7.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163455

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder. The number of cases of PD is expected to double by 2030, representing a heavy burden on the healthcare system. Clinical symptoms include the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain, which leads to striatal dopamine deficiency and, subsequently, causes motor dysfunction. Certainly, the study of the transcriptome of the various RNAs plays a crucial role in the study of this neurodegenerative disease. In fact, the aim of this study was to evaluate the transcriptome in a cohort of subjects with PD compared with a control cohort. In particular we focused on mRNAs and long non-coding RNAs (lncRNA), using the Illumina NextSeq 550 DX System. Differential expression analysis revealed 716 transcripts with padj ≤ 0.05; among these, 630 were mRNA (coding protein), lncRNA, and MT_tRNA. Ingenuity pathway analysis (IPA, Qiagen) was used to perform the functional and pathway analysis. The highest statistically significant pathways were: IL-15 signaling, B cell receptor signaling, systemic lupus erythematosus in B cell signaling pathway, communication between innate and adaptive immune cells, and melatonin degradation II. Our findings further reinforce the important roles of mitochondria and lncRNA in PD and, in parallel, further support the concept of inverse comorbidity between PD and some cancers.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Doença de Parkinson/genética , RNA Longo não Codificante/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA
8.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36614153

RESUMO

Parkinson's disease (PD) is a neurodegenerative synucleinopathy that has a not yet fully understood molecular pathomechanism behind it. The role of risk genes regulated by small non-coding RNAs, or microRNAs (miRNAs), has also been highlighted in PD, where they may influence disease progression and comorbidities. In this case-control study, we analyzed miRNAs on peripheral blood mononuclear cells by means of RNA-seq in 30 participants, with the aim of identifying miRNAs differentially expressed in PD compared to age-matched healthy controls. Additionally, we investigated the pathways influenced by differentially expressed miRNAs and assessed whether a specific pathway could potentially be associated with PD susceptibility (enrichment analyses performed using the Ingenuity Pathway Analysis tools). Overall, considering that the upregulation of miRNAs might be related with the downregulation of their messenger RNA targets, and vice versa, we found several putative targets of dysregulated miRNAs (i.e., upregulated: hsa-miR-1275, hsa-miR-23a-5p, hsa-miR-432-5p, hsa-miR-4433b-3p, and hsa-miR-4443; downregulated: hsa-miR-142-5p, hsa-miR-143-3p, hsa-miR-374a-3p, hsa-miR-542-3p, and hsa-miR-99a-5p). An inverse connection between cancer and neurodegeneration, called "inverse comorbidity", has also been noted, showing that some genes or miRNAs may be expressed oppositely in neurodegenerative disorders and in some cancers. Therefore, it may be reasonable to consider these miRNAs as potential diagnostic markers and outcome measures.


Assuntos
MicroRNAs , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Estudos de Casos e Controles , Leucócitos Mononucleares/metabolismo , MicroRNAs/metabolismo , Regulação para Baixo/genética
9.
Mol Biol Rep ; 48(11): 7627-7631, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34628580

RESUMO

BACKGROUND: Prostate cancer (PCa) is one of the leading causes of death in Western countries. Environmental and genetic factors play a pivotal role in PCa etiology. Timely identification of the genetic causes is useful for an early diagnosis. Parkinson's disease (PD) is the most frequent neurodegenerative movement disorder; it is associated with the presence of Lewy bodies and genetic factors are involved in its pathogenesis. Several studies have indicated that the expression of target genes in patients with PD is inversely related to cancer development; this phenomenon has been named "inverse comorbidity". The present study was undertaken to evaluate whether a genetic dysregulation occurs in opposite directions in patients with PD or PCa. METHODS AND RESULTS: In the present study, next-generation sequencing transcriptome analysis was used to assess whether a genetic dysregulation in opposite directions occurs in patients with PD or PCa. The genes SLC30A1, ADO, SRGAP2C, and TBC1D12 resulted up-regulated in patients with PD compared to healthy donors as controls and down-regulated in patients with PCa compared with the same control group. CONCLUSIONS: These results support the hypothesis of the presence of inverse comorbidity between PD and PCa.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias , Doença de Parkinson , Neoplasias da Próstata , RNA-Seq , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo
10.
Hum Cell ; 34(6): 1662-1670, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510387

RESUMO

Down syndrome (DS) is defined by the presence of a third copy of chromosome 21. Several comorbidities can be found in these patients, such as intellectual disability (ID), muscle weakness, hypotonia, congenital heart disease, and autoimmune diseases. The molecular mechanisms playing a role in the development of such comorbidities are still unclear. The regulation and expression of genes that map to chromosome 21 are dynamic and complex, so it is important to perform global gene expression studies with high statistical power to fully characterize the transcriptome in DS patients. This study was undertaken to evaluate mRNAs and lncRNA expression in patients with DS versus a matched cohort of healthy subjects. RNA sequencing was used to perform this transcriptome study. Differential expression analysis revealed 967 transcripts with padj ≤ 0.05. Among them, 447 transcripts were differentially expressed in patients with DS compared to controls. Particularly, 203 transcripts were down expressed (151 protein-coding mRNAs, 45 lncRNAs, 1 microRNA, 1 mitochondrial tRNA, 1 ribozyme, and 1 small nuclear RNA) and 244 were over expressed (210 protein-coding mRNAs and 34 lncRNAs). Interestingly, deregulated lncRNAs are involved in pathways that play a role in developmental disorders, neurological diseases, DNA replication and repair mechanisms, and cancer development in DS patients. In conclusion, these results suggest a role of lncRNAs in the phenotype of DS patients.


Assuntos
Síndrome de Down/genética , Perfilação da Expressão Gênica/métodos , RNA Longo não Codificante/genética , Transcriptoma/genética , Adulto , Cromossomos Humanos Par 21/genética , Estudos de Coortes , Comorbidade , Reparo do DNA/genética , Replicação do DNA/genética , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Doenças do Sistema Nervoso/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sicília , Adulto Jovem
11.
Mol Biol Rep ; 48(6): 5335-5338, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34184200

RESUMO

Chromosome 21 trisomy or Down syndrome (DS) is the most common genetic cause of intellectual disability (ID). DS is also associated with hypotonia, muscle weakness, autoimmune diseases, and congenital heart disease. C-C chemokine receptor type 3 (CCR3) plays a role in inflammatory, autoimmune, and neuronal migration mechanisms. The present study aimed to evaluate the expression of the CCR3 gene by NGS and qRT-PCR in patients with DS and normal controls (NC). The CCR3 gene was over-expressed in DS patients compared to NC. These data suggest that an over-expression of the CCR3 gene is associated with the phenotype of patients with DS.


Assuntos
Síndrome de Down/genética , Receptores CCR3/genética , Adulto , Síndrome de Down/metabolismo , Feminino , Expressão Gênica/genética , Humanos , Deficiência Intelectual/genética , Masculino , Pessoa de Meia-Idade , Fenótipo , Receptores CCR3/metabolismo , Transcriptoma/genética , Trissomia
12.
Eur Heart J ; 41(45): 4332-4345, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32330934

RESUMO

AIMS: Cardiac myxomas usually develop in the atria and consist of an acid-mucopolysaccharide-rich myxoid matrix with polygonal stromal cells scattered throughout. These human benign tumours are a valuable research model because of the rarity of cardiac tumours, their clinical presentation and uncertain origin. Here, we assessed whether multipotent cardiac stem/progenitor cells (CSCs) give rise to atrial myxoma tissue. METHODS AND RESULTS: Twenty-three myxomas were collected and analysed for the presence of multipotent CSCs. We detected myxoma cells positive for c-kit (c-kitpos) but very rare Isl-1 positive cells. Most of the c-kitpos cells were blood lineage-committed CD45pos/CD31pos cells. However, c-kitpos/CD45neg/CD31neg cardiac myxoma cells expressed stemness and cardiac progenitor cell transcription factors. Approximately ≤10% of the c-kitpos/CD45neg/CD31neg myxoma cells also expressed calretinin, a characteristic of myxoma stromal cells. In vitro, the c-kitpos/CD45neg/CD31neg myxoma cells secrete chondroitin-6-sulfate and hyaluronic acid, which are the main components of gelatinous myxoma matrix in vivo. In vitro, c-kitpos/CD45neg/CD31neg myxoma cells have stem cell properties being clonogenic, self-renewing, and sphere forming while exhibiting an abortive cardiac differentiation potential. Myxoma-derived CSCs possess a mRNA and microRNA transcriptome overall similar to normal myocardium-derived c-kitpos/CD45neg/CD31negCSCs , yet showing a relatively small and relevant fraction of dysregulated mRNA/miRNAs (miR-126-3p and miR-335-5p, in particular). Importantly, myxoma-derived CSCs but not normal myocardium-derived CSCs, seed human myxoma tumours in xenograft's in immunodeficient NOD/SCID mice. CONCLUSION: Myxoma-derived c-kitpos/CD45neg/CD31neg CSCs fulfill the criteria expected of atrial myxoma-initiating stem cells. The transcriptome of these cells indicates that they belong to or are derived from the same lineage as the atrial multipotent c-kitpos/CD45neg/CD31neg CSCs. Taken together the data presented here suggest that human myxomas could be the first-described CSC-related human heart disease.


Assuntos
Neoplasias Cardíacas , Mixoma , Animais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco
13.
Cells ; 9(4)2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260128

RESUMO

Triple-negative breast cancer (TNBC) is a highly heterogeneous disease, representing the most aggressive breast cancer (BC) subtype with limited treatment options due to a lack of estrogen receptor alpha (ERα), progesterone receptor (PR), and Erb-B2 receptor tyrosine kinase 2 (HER2/neu) expression. Estrogen receptor beta (ERß) is present in a fraction of TNBC patients, where its expression correlates with improved patient outcomes, supported by the fact that it exerts oncosuppressive effects in TNBC cell models in vitro. ERß is involved in microRNA-mediated regulation of gene expression in hormone-responsive BC cells and could mediate its actions through small noncoding RNAs (sncRNAs) in TNBCs also. To verify this possibility, smallRNA sequencing was performed on three ERß-expressing cell lines from different TNBC molecular subtypes. Several sncRNAs resulted modulated by ERß, with a subset being regulated in a tumor subtype-independent manner. Interestingly, sncRNA profiling of 12 ERß+and 32 ERß- primary TNBC biopsies identified 7 microRNAs, 1 PIWI-interacting RNA (piRNA), and 1 transfer RNA (tRNA) differentially expressed in ERß+ compared to ERß- tumors and cell lines. Among them, miR-181a-5p was found to be overexpressed in ERß+ tumors and predicted target key components of the cholesterol biosynthesis pathway previously found to be inhibited by ERß in TNBC cells.


Assuntos
Colesterol/biossíntese , Receptor beta de Estrogênio/metabolismo , MicroRNAs/metabolismo , Pequeno RNA não Traduzido/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Receptor beta de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Análise de Sobrevida , Regulação para Cima/genética
14.
Mol Cell Proteomics ; 19(2): 245-260, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792072

RESUMO

Triple-negative breast cancer (TNBC) is characterized by poor response to therapy and low overall patient survival. Recently, Estrogen Receptor beta (ERß) has been found to be expressed in a fraction of TNBCs where, because of its oncosuppressive actions on the genome, it represents a potential therapeutic target, provided a better understanding of its actions in these tumors becomes available. To this end, the cell lines Hs 578T, MDA-MB-468 and HCC1806, representing the claudin-low, basal-like 1 and 2 TNBC molecular subtypes respectively, were engineered to express ERß under the control of a Tetracycline-inducible promoter and used to investigate the effects of this transcription factor on gene activity. The antiproliferative effects of ERß in these cells were confirmed by multiple functional approaches, including transcriptome profiling and global mapping of receptor binding sites in the genome, that revealed direct negative regulation by ERß of genes, encoding for key components of cellular pathways associated to TNBC aggressiveness representing novel therapeutic targets such as angiogenesis, invasion, metastasis and cholesterol biosynthesis. Supporting these results, interaction proteomics by immunoprecipitation coupled to nano LC-MS/MS mass spectrometry revealed ERß association with several potential nuclear protein partners, including key components of regulatory complexes known to control chromatin remodeling, transcriptional and post-transcriptional gene regulation and RNA splicing. Among these, ERß association with the Polycomb Repressor Complexes 1 and 2 (PRC1/2), known for their central role in gene regulation in cancer cells, was confirmed in all three TNBC subtypes investigated, suggesting its occurrence independently from the cellular context. These results demonstrate a significant impact of ERß in TNBC genome activity mediated by its cooperation with regulatory multiprotein chromatin remodeling complexes, providing novel ground to devise new strategies for the treatment of these diseases based on ligands affecting the activity of this nuclear receptor or some of its protein partners.


Assuntos
Colesterol/biossíntese , Cromatina/metabolismo , Receptor beta de Estrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Humanos , Proteômica , Neoplasias de Mama Triplo Negativas/genética
15.
Oncol Rep ; 41(2): 1209-1217, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30483802

RESUMO

Endometrial cancer is the most frequently diagnosed gynecologic malignant disease. Although several genetic alterations have been associated with the increased risk of endometrial cancer, to date, the diagnosis and prognosis still rely on morphological features of the tumor, such as histological type, grading and invasiveness. As molecular­based classification is desirable for optimal treatment and prognosis of these cancers, we explored the potential of lncRNAs as molecular biomarkers. To this end, we first identified by RNA sequencing (RNA­Seq) a set of lncRNAs differentially expressed in cancer vs. normal endometrial tissues, a result confirmed also by analysis of normal and cancerous endometrium RNA­Seq data from TCGA (The Cancer Genome Atlas). A significant association of a subset of these differentially expressed lncRNAs with tumor grade was then determined in 405 TCGA endometrial cancer profiles. Integrating endometrial cancer­specific expression profiles of long and small non­coding RNAs, a functional association network was then identified. These results describe for the first time a functional ῾coreá¾½ network, comprising small and long RNAs, whose deregulation is associated with endometrial neoplastic transformation, representing a set of cancer biomarkers that can be monitored and targeted for diagnosis, follow­up and therapy of these tumors.


Assuntos
Neoplasias do Endométrio/classificação , RNA Longo não Codificante/metabolismo , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Endométrio/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade
16.
Sci Rep ; 8(1): 498, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323256

RESUMO

Platelet activation triggers thrombus formation in physiological and pathological conditions, such as acute coronary syndromes. Current therapies still fail to prevent thrombotic events in numerous patients, indicating that the mechanisms modulating platelet response during activation need to be clarified. The evidence that platelets are capable of de novo protein synthesis in response to stimuli raised the issue of how megakaryocyte-derived mRNAs are regulated in these anucleate cell fragments. Proteogenomics was applied here to investigate this phenomeon in platelets activated in vitro with Collagen or Thrombin Receptor Activating Peptide. Combining proteomics and transcriptomics allowed in depth platelet proteome characterization, revealing a significant effect of either stimulus on proteome composition. In silico analysis revealed the presence of resident immature RNAs in resting platelets, characterized by retained introns, while unbiased proteogenomics correlated intron removal by RNA splicing with changes on proteome composition upon activation. This allowed identification of a set of transcripts undergoing maturation by intron removal during activation and resulting in accumulation of the corresponding peptides at exon-exon junctions. These results indicate that RNA splicing events occur in platelets during activation and that maturation of specific pre-mRNAs is part of the activation cascade, contributing to a dynamic fine-tuning of the transcriptome.


Assuntos
Plaquetas/metabolismo , Proteoma/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , Cromatografia Líquida de Alta Pressão , Éxons , Genômica , Humanos , Masculino , Ativação Plaquetária , Biossíntese de Proteínas , Proteoma/análise , Proteômica , RNA Nuclear Pequeno/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Adulto Jovem
17.
Genome Biol ; 18(1): 189, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-29017520

RESUMO

BACKGROUND: The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERß) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. RESULTS: Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERß in gene regulation, we identify AGO2 as a novel partner of ERß in human BC cells. ERß-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERß binding sites, and total and nascent RNA-Seq in ERß + vs ERß - cells, and before and after AGO2 knock-down in ERß + cells, reveals a widespread involvement of this factor in ERß-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERß-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. CONCLUSIONS: These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERß, indicating that both factors are endowed with multiple roles in the control of key cellular functions.


Assuntos
Proteínas Argonautas/metabolismo , Neoplasias da Mama/genética , Receptor beta de Estrogênio/metabolismo , Regulação da Expressão Gênica , Splicing de RNA , Complexo de Inativação Induzido por RNA/metabolismo , Transcrição Gênica , Neoplasias da Mama/metabolismo , Genoma Humano , Humanos , Células MCF-7
19.
PLoS One ; 12(6): e0178865, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662101

RESUMO

Hyperactivation of the phosphatydil-inositol-3' phosphate kinase (PI3K)/AKT pathway is observed in most NSCLCs, promoting proliferation, migration, invasion and resistance to therapy. AKT can be activated through several mechanisms that include loss of the negative regulator PTEN, activating mutations of the catalytic subunit of PI3K (PIK3CA) and/or mutations of AKT1 itself. However, number and identity of downstream targets of activated PI3K/AKT pathway are poorly defined. To identify the genes that are targets of constitutive PI3K/AKT signalling in lung cancer cells, we performed a comparative transcriptomic analysis of human lung epithelial cells (BEAS-2B) expressing active mutant AKT1 (AKT1-E17K), active mutant PIK3CA (PIK3CA-E545K) or that are silenced for PTEN. We found that, altogether, aberrant PI3K/AKT signalling in lung epithelial cells regulated the expression of 1,960/20,436 genes (9%), though only 30 differentially expressed genes (DEGs) (15 up-regulated, 12 down-regulated and 3 discordant) out of 20,436 that were common among BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells (0.1%). Conversely, DEGs specific for mutant AKT1 were 133 (85 up-regulated; 48 down-regulated), DEGs specific for mutant PIK3CA were 502 (280 up-regulated; 222 down-regulated) and DEGs specific for PTEN loss were 1549 (799 up-regulated, 750 down-regulated). The results obtained from array analysis were confirmed by quantitative RT-PCR on selected up- and down-regulated genes (n = 10). Treatment of BEAS-C cells and the corresponding derivatives with pharmacological inhibitors of AKT (MK2206) or PI3K (LY294002) further validated the significance of our findings. Moreover, mRNA expression of selected DEGs (SGK1, IGFBP3, PEG10, GDF15, PTGES, S100P, respectively) correlated with the activation status of the PI3K/AKT pathway assessed by S473 phosphorylation in NSCLC cell lines (n = 6). Finally, we made use of Ingenuity Pathway Analysis (IPA) to investigate the relevant BioFunctions enriched by the costitutive activation of AKT1-, PI3K- or PTEN-dependent signalling in lung epithelial cells. Expectedly, the analysis of the DEGs common to all three alterations highlighted a group of BioFunctions that included Cell Proliferation of tumor cell lines (14 DEGs), Invasion of cells (10 DEGs) and Migration of tumour cell lines (10 DEGs), with a common core of 5 genes (ATF3, CDKN1A, GDF15, HBEGF and LCN2) that likely represent downstream effectors of the pro-oncogenic activities of PI3K/AKT signalling. Conversely, IPA analysis of exclusive DEGs led to the identification of different downstream effectors that are modulated by mutant AKT1 (TGFBR2, CTSZ, EMP1), mutant PIK3CA (CCND2, CDK2, IGFBP2, TRIB1) and PTEN loss (ASNS, FHL2). These findings not only shed light on the molecular mechanisms that are activated by aberrant signalling through the PI3K/AKT pathway in lung epithelial cells, but also contribute to the identification of previously unrecognised molecules whose regulation takes part in the development of lung cancer.


Assuntos
Expressão Gênica , Neoplasias Pulmonares/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Transformada , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação
20.
Bioinformatics ; 33(6): 938-940, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28057684

RESUMO

Summary: The interest in investigating the biological roles of small non-coding RNAs (sncRNAs) is increasing, due to the pleiotropic effects of these molecules exert in many biological contexts. While several methods and tools are available to study microRNAs (miRNAs), only few focus on novel classes of sncRNAs, in particular PIWI-interacting RNAs (piRNAs). To overcome these limitations, we implemented iSmaRT ( i ntegrative Sm all R NA T ool-kit), an automated pipeline to analyze smallRNA-Seq data. Availability and Implementation: iSmaRT is a collection of bioinformatics tools and own algorithms, interconnected through a Graphical User Interface (GUI). In addition to performing comprehensive analyses on miRNAs, it implements specific computational modules to analyze piRNAs, predicting novel ones and identifying their RNA targets. A smallRNA-Seq dataset generated from brain samples of Huntington's Disease patients was used here to illustrate iSmaRT performances, demonstrating how the pipeline can provide, in a rapid and user friendly way, a comprehensive analysis of different classes of sncRNAs. iSmaRT is freely available on the web at ftp://labmedmolge-1.unisa.it (User: iSmart - Password: password). Contact: aweisz@unisa.it or ggiurato@unisa.it. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Pequeno RNA não Traduzido , Análise de Sequência de RNA/métodos , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Doença de Huntington/metabolismo , MicroRNAs , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA