Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 303, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515025

RESUMO

BACKGROUND: A fine balance of feto-maternal resource allocation is required to support pregnancy, which depends on interactions between maternal and fetal genetic potential, maternal nutrition and environment, endometrial and placental functions. In particular, some imprinted genes have a role in regulating maternal-fetal nutrient exchange, but few have been documented in the endometrium. The aim of this study is to describe the expression of 42 genes, with parental expression, in the endometrium comparing two extreme breeds: Large White (LW); Meishan (MS) with contrasting neonatal mortality and maturity at two days of gestation (D90-D110). We investigated their potential contribution to fetal maturation exploring genes-fetal phenotypes relationships. Last, we hypothesized that the fetal genome and sex influence their endometrial expression. For this purpose, pure and reciprocally crossbred fetuses were produced using LW and MS breeds. Thus, in the same uterus, endometrial samples were associated with its purebred or crossbred fetuses. RESULTS: Among the 22 differentially expressed genes (DEGs), 14 DEGs were differentially regulated between the two days of gestation. More gestational changes were described in LW (11 DEGs) than in MS (2 DEGs). Nine DEGs were differentially regulated between the two extreme breeds, highlighting differences in the regulation of endometrial angiogenesis, nutrient transport and energy metabolism. We identified DEGs that showed high correlations with indicators of fetal maturation, such as ponderal index at D90 and fetal blood fructose level and placental weight at D110. We pointed out for the first time the influence of fetal sex and genome on endometrial expression at D90, highlighting AMPD3, CITED1 and H19 genes. We demonstrated that fetal sex affects the expression of five imprinted genes in LW endometrium. Fetal genome influenced the expression of four genes in LW endometrium but not in MS endometrium. Interestingly, both fetal sex and fetal genome interact to influence endometrial gene expression. CONCLUSIONS: These data provide evidence for some sexual dimorphism in the pregnant endometrium and for the contribution of the fetal genome to feto-maternal interactions at the end of gestation. They suggest that the paternal genome may contribute significantly to piglet survival, especially in crossbreeding production systems.


Assuntos
Endométrio , Placenta , Gravidez , Feminino , Animais , Suínos , Placenta/metabolismo , Endométrio/metabolismo , Desenvolvimento Fetal/genética , Útero/fisiologia , Expressão Gênica
2.
Physiol Genomics ; 56(5): 397-408, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497119

RESUMO

Feed efficiency is a trait of interest in pigs as it contributes to lowering the ecological and economical costs of pig production. A divergent genetic selection experiment from a Large White pig population was performed for 10 generations, leading to pig lines with relatively low- (LRFI) and high- (HRFI) residual feed intake (RFI). Feeding behavior and metabolic differences have been previously reported between the two lines. We hypothesized that part of these differences could be related to differential sensing and absorption of nutrients in the proximal intestine. We investigated the duodenum transcriptome and DNA methylation profiles comparing overnight fasting with ad libitum feeding in LRFI and HRFI pigs (n = 24). We identified 1,106 differentially expressed genes between the two lines, notably affecting pathways of the transmembrane transport activity and related to mitosis or chromosome separation. The LRFI line showed a greater transcriptomic response to feed intake than the HRFI line. Feed intake affected genes from both anabolic and catabolic pathways in the pig duodenum, such as rRNA production and autophagy. Several nutrient transporter and tight junction genes were differentially expressed between lines and/or by short-term feed intake. We also identified 409 differentially methylated regions in the duodenum mucosa between the two lines, while this epigenetic mark was less affected by feeding. Our findings highlighted that the genetic selection for feed efficiency in pigs changed the transcriptome profiles of the duodenum, and notably its response to feed intake, suggesting key roles for this proximal gut segment in mechanisms underlying feed efficiency.NEW & NOTEWORTHY The duodenum is a key organ for the hunger/satiety loop and nutrient sensing. We investigated how the duodenum transcriptome and DNA methylation profiles are affected by feed intakes in pigs. We observed thousands of changes in gene expression levels between overnight-fasted and fed pigs in high-feed efficiency pig lines, but almost none in the related low-feed efficiency pig line.


Assuntos
Metilação de DNA , Transcriptoma , Suínos/genética , Animais , Transcriptoma/genética , Metilação de DNA/genética , Ingestão de Alimentos/genética , Perfilação da Expressão Gênica , Duodeno , Ração Animal
3.
Animal ; 18(3): 101099, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377811

RESUMO

A key characteristic of free-range chicken farming is to enable chickens to spend time outdoors. However, each chicken may use the available areas for roaming in variable ways. To check if, and how, broilers use their outdoor range at an individual level, we need to reliably characterise range use behaviour. Traditional methods relying on visual scans require significant time investment and only provide discontinuous information. Passive RFID (Radio Frequency Identification) systems enable tracking individually tagged chickens' when they go through pop-holes; hence, they only provide partial information on the movements of individual chickens. Here, we describe a new method to measure chickens' range use and test its reliability on three ranges each containing a different breed. We used an active RFID system to localise chickens in their barn, or in one of nine zones of their range, every 30 seconds and assessed range-use behaviour in 600 chickens belonging to three breeds of slow- or medium-growing broilers used for outdoor production (all <40 g daily weight gain). From those real-time locations, we determined five measures to describe daily range use: time spent in the barn, number of outdoor accesses, number of zones visited in a day, gregariousness (an index that increases when birds spend time in zones where other birds are), and numbers of zone changes. Principal Component Analyses (PCAs) were performed on those measures, in each production system, to create two synthetic indicators of chickens' range use behaviour. The first two PCA axes represented over 90% of the variance of the five measures and were both consistent over time and correlated with independent visual scans. Contributions of the five measures to the PCAs were similar among breeds, except for the correlation between the number of outdoor accesses and the four other measures. PC1 correlated with time spent inside the barn and zone changes frequency, whilst PC2 was explained by exploration of the range. Taken together, PC1 and PC2 indicators showed that range use increased with age, outdoor temperature (in spring), and did not differ between males and females. Importantly, daily scores for both indicators were repeatable among individuals - particularly in PC1 - showing inter-individual variability on range-use. The characterisation of broiler behaviour around their range with these reliable and repeatable indicators provides novel tools to help understand individual variations of range-use in free-range farming.


Assuntos
Galinhas , Abrigo para Animais , Humanos , Masculino , Feminino , Animais , Reprodutibilidade dos Testes , Comportamento Animal , Criação de Animais Domésticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA