Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Liver Int ; 44(2): 614-624, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105495

RESUMO

BACKGROUND AND AIMS: Hepatitis B virus X protein (HBx) play a key role in pathogenesis of HBV-induced hepatocellular carcinoma (HCC) by promoting epithelial to mesenchymal transition (EMT). In this study, we hypothesized that inhibition of HBx is an effective strategy to combat HCC. METHODOLOGY AND RESULTS: We designed and synthesized novel HBx gene specific single guide RNA (sgRNA) with CRISPR/Cas9 system and studied its in vitro effects on tumour properties of HepG2-2.15. Full length HBx gene was excised using HBx-CRISPR that resulted in significant knockdown of HBx expression in hepatoma cells. HBx-CRISPR also decreased levels of HBsAg and HBV cccDNA expression. A decreased expression of mesenchymal markers, proliferation and tumorigenic properties was observed in HBx-CRISPR treated cells as compared to controls in both two- and three- dimensional (2D and 3D) tumour models. Transcriptomics data showed that out of 1159 differentially expressed genes in HBx-CRISPR transfected cells as compared to controls, 70 genes were upregulated while 1089 genes associated with cell proliferation and EMT pathways were downregulated. CONCLUSION: Thus, targeting of HBx by CRISPR/Cas9 gene editing system reduces covalently closed circular DNA (cccDNA) levels, HBsAg production and mesenchymal characteristics of HBV-HCC cells. We envision inhibition of HBx by CRISPR as a novel therapeutic approach for HBV-induced HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , Neoplasias Hepáticas/genética , Antígenos de Superfície da Hepatite B/genética , Edição de Genes , Sistemas CRISPR-Cas , Transição Epitelial-Mesenquimal/genética , RNA Guia de Sistemas CRISPR-Cas , DNA Circular , Replicação Viral , Células Hep G2
2.
JHEP Rep ; 5(10): 100816, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37663117

RESUMO

Background & Aims: Lymphatic vessels (LVs) are crucial for maintaining abdominal fluid homoeostasis and immunity. In cirrhosis, mesenteric LVs (mLVs) are dilated and dysfunctional. Given the established role of vascular endothelial growth factor-C (VEGF-C) in improving LVs, we hypothesised that VEGF-C treatment could ameliorate the functions of mLVs in cirrhosis. Methods: In this study, we developed a nanoformulation comprising LV-specific growth factor, recombinant human VEGF-C (Cys156Ser) protein (E-VEGF-C) and delivered it orally in different models of rat cirrhosis to target mLVs. Cirrhotic rats were given nanoformulation without VEGF-C served as vehicles. Drainage of mLVs was analysed using tracer dye. Portal and systemic physiological assessments and computed tomography were performed to measure portal pressures and ascites. Gene expression and permeability of primary mesenteric lymphatic endothelial cells (LyECs) was studied. Immune cells in mesenteric lymph nodes (MLNs) were quantified by flow cytometry. Endogenous and exogenous gut bacterial translocation to MLNs was examined. Results: In cirrhotic rats, mLVs were dilated and leaky with impaired drainage. Treatment with E-VEGF-C induced proliferation of mLVs, reduced their diameter, and improved functional drainage. Ascites and portal pressures were significantly reduced in E-VEGF-C rats compared with vehicle rats. In MLNs of E-VEGF-C animals, CD8+CD134+ T cells were increased, whereas CD25+ regulatory T cells were decreased. Both endogenous and exogenous bacterial translocation were limited to MLNs in E-VEGF-C rats with reduced levels of endotoxins in ascites and blood in comparison with those in vehicle rats. E-VEGF-C treatment upregulated the expression of vascular endothelial-cadherin in LyECs and functionally improved the permeability of these cells. Conclusions: E-VEGF-C treatment ameliorates mesenteric lymph drainage and portal pressure and strengthens cytotoxic T-cell immunity in MLNs in experimental cirrhosis. It may thus serve as a promising therapy to manage ascites and reduce pathogenic gut bacterial translocation in cirrhosis. Impact and Implications: A human recombinant pro-lymphangiogenic growth factor, VEGF-C, was encapsulated in nanolipocarriers (E-VEGF-C) and orally delivered in different models of rat liver cirrhosis to facilitate its gut lymphatic vessel uptake. E-VEGF-C administration significantly increased mesenteric lymphatic vessel proliferation and improved lymph drainage, attenuating abdominal ascites and portal pressures in the animal models. E-VEGF-C treatment limited bacterial translocation to MLNs only with reduced gut bacterial load and ascitic endotoxins. E-VEGF-C therapy thus holds the potential to manage ascites and portal pressure and reduce gut bacterial translocation in patients with cirrhosis.

3.
Exp Cell Res ; 428(1): 113618, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142202

RESUMO

Hepatitis B Virus (HBV) is the prevailing cause of chronic liver disease, which progresses to Hepatocellular carcinoma (HCC) in 75% of cases. It represents a serious health concern being the fourth leading cause of cancer-related mortality worldwide. Treatments available to date fail to provide a complete cure with high chances of recurrence and related side effects. The lack of reliable, reproducible, and scalable in vitro modeling systems that could recapitulate the viral life cycle and represent virus-host interactions has hindered the development of effective treatments so far. The present review provides insights into the current in-vivo and in-vitro models used for studying HBV and their major limitations. We highlight the use of three-dimensional liver organoids as a novel and suitable platform for modeling HBV infection and HBV-mediated HCC. HBV organoids can be expanded, genetically altered, patient-derived, tested for drug discovery, and biobanked. This review also provides the general guidelines for culturing HBV organoids and highlights their several prospects for HBV drug discovery and screening.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Vírus da Hepatite B , Neoplasias Hepáticas/patologia , Organoides/patologia
4.
Bioengineering (Basel) ; 10(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36829625

RESUMO

Hepatocytes are differentiated cells that account for 80% of the hepatic volume and perform all major functions of the liver. In vivo, after an acute insult, adult hepatocytes retain their ability to proliferate and participate in liver regeneration. However, in vitro, prolonged culture and proliferation of viable and functional primary hepatocytes have remained the major and the most challenging goal of hepatocyte-based cell therapies and liver tissue engineering. The first functional cultures of rat primary hepatocytes between two layers of collagen gel, also termed as the "sandwich cultures", were reported in 1989. Since this study, several technical developments including choice of hydrogels, type of microenvironment, growth factors and culture conditions, mono or co-cultures of hepatocytes along with other supporting cell types have evolved for both rat and human primary hepatocytes in recent years. All these improvements have led to a substantial improvement in the number, life-span and hepatic functions of these cells in vitro for several downstream applications. In the current review, we highlight the details, limitations and prospects of different technical strategies being used in primary hepatocyte cultures. We discuss the use of newer biomaterials as scaffolds for efficient culture of primary hepatocytes. We also describe the derivation of mature hepatocytes from other cellular sources such as induced pluripotent stem cells, bone marrow stem cells and 3D liver organoids. Finally, we also explain the use of perfusion-based bioreactor systems and bioengineering strategies to support the long-term function of hepatocytes in 3D conditions.

5.
ACS Appl Bio Mater ; 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35994753

RESUMO

A huge shortage of organ donors, particularly in the case of liver, has necessitated the development of alternative therapeutic strategies. Primary hepatocytes (pHCs) transplantation has made a considerable transition from bench to bedside, but the short-term viability and functionality of pHCs in in vitro limit their use for clinical applications. Different cell culture strategies are required to maintain the proliferation of pHCs for extended periods. Here, we described the formation of a hybrid scaffold based on a modified dipeptide for the culture of pHCs. First, the dipeptide (Dp), isoleucine-α,ß-dehydrophenylalanine (IΔF) was synthesized, purified, and fully characterized. IΔF readily formed a highly stable hydrogel, which was also characterized by CD, TEM, and thioflavin T assay. The addition of soluble liver extracellular matrix (sLEM) to the dipeptide readily formed a hybrid scaffold that was characterized by TEM, and its mechanical strength was determined by rheology experiments. The hybrid scaffold was translucent, biocompatible, and proteolytically stable and, with its mechanical strength, closely mimicked that of the native liver. LEM1-Dp matrix exhibited high biocompatibility in the readily available adherent liver cell line Huh7 and primary rat hepatocyte cells (pHCs). pHCs cultured on LEM1-Dp matrix also maintained significantly higher cell viability and an escalated expression of markers related to the hepatocytes such as albumin as compared to that observed in cells cultured on collagen type I (Col I)-coated substrate plate (col-TCTP). Z-stacking of confocal laser microscopy's volume view clearly indicated pHCs seeded on top of the hydrogel matrix migrated toward the Z direction showing 3D growth. Our results indicated that low molecular weight dipeptide hydrogel along with sLEM can resemble biomimetic 3D-like microenvironments for improved pHCs proliferation, differentiation, and function. This hybrid scaffold is also easy to scale up, which makes it suitable for several downstream applications of hepatocytes, including drug development, pHCs transplantation, and liver regeneration.

6.
Oncol Lett ; 24(3): 315, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35949600

RESUMO

The purpose of the present study was to evaluate the effects of vascular endothelial growth factor (VEGF) on tumorigenic properties in two-dimensional (2D) and three-dimensional (3D) cultures of hepatoma cells. The proliferation and invasion of hepatoma cells was assessed using wound healing, chemotaxis Transwell, invasion, tube-forming and hanging drop assays in both 2D and 3D cultures. The expression levels of epithelial-mesenchymal transition (EMT) and stemness markers were analysed using reverse transcription-quantitative PCR (RT-qPCR) for mRNA expression and immunofluorescence assay for protein expression. To validate the role of VEGF in tumour growth, a VEGF receptor (VEGFR) inhibitor (sorafenib) was used. The results demonstrated that the hepatoma cells formed 3D spheroids that differed in size and density in the absence and presence of the growth factor, VEGF. In all spheroids, invasion and angiogenesis were more aggressive in 3D cultures in comparison to 2D conditions following treatment with VEGF. Mechanistically, the VEGF-mediated increase in the levels of EMT markers, including Vimentin, N-cadherin 2 (Cadherin 2) and Thy-1 Cell Surface Antigen was observed in the 2D and 3D cultures. Sorafenib treatment for 24 h culminated in a marked reduction in cell migration, cell-cell adhesion, spheroid compaction and EMT gene expression in 3D models as compared to the 2D models. On the whole, the findings of the present study suggested that as compared to the 2D cell cultures, 3D cell cultures model may be used as a more realistic model for the study of tumour growth and invasion in the presence of angiogenic factors, as well as for tumour inhibitor screening.

7.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445195

RESUMO

BACKGROUND: Runt-related transcription factor (RUNX1) regulates inflammation in non-alcoholic steatohepatitis (NASH). METHODS: We performed in vivo targeted silencing of the RUNX1 gene in liver sinusoidal endothelial cells (LSECs) by using vegfr3 antibody tagged immunonano-lipocarriers encapsulated RUNX1 siRNA (RUNX1 siRNA) in murine models of methionine choline deficient (MCD) diet-induced NASH. MCD mice given nanolipocarriers-encapsulated negative siRNA were vehicle, and mice with standard diet were controls. RESULTS: Liver RUNX1 expression was increased in the LSECs of MCD mice in comparison to controls. RUNX1 protein expression was decreased by 40% in CD31-positive LSECs of RUNX1 siRNA mice in comparison to vehicle, resulting in the downregulation of adhesion molecules, ICAM1 expression, and VCAM1 expression in LSECs. There was a marked decrease in infiltrated T cells and myeloid cells along with reduced inflammatory cytokines in the liver of RUNX1 siRNA mice as compared to that observed in the vehicle. CONCLUSIONS: In vivo LSEC-specific silencing of RUNX1 using immunonano-lipocarriers encapsulated siRNA effectively reduces its expression of adhesion molecules, infiltrate on of immune cells in liver, and inflammation in NASH.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Inflamação/genética , Hepatopatia Gordurosa não Alcoólica/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Inflamação/terapia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/terapia , RNA Interferente Pequeno/uso terapêutico , Terapêutica com RNAi
8.
ACS Biomater Sci Eng ; 7(8): 3861-3873, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34318665

RESUMO

We developed hybrid liver-specific three-dimensional (3D) printed scaffolds using a solubilized native decellularized liver (DCL) matrix and silk fibroin (SF) and investigated their ability to support functional cultures of hepatic cells. Rat livers were decellularized by perfusing detergents via the portal vein, solubilized using pepsin to form DCL, and characterized. SF blended with gelatin (8% w/v) was optimized with varying percentages of DCL to obtain silk gelatin-DCL bioink (SG-DCL). Different compositions of SG-DCL were studied by rheology for optimum versatility and print fidelity. 3D printed six-layered scaffolds were fabricated using a sophisticated direct-write 3D bioprinter. Huh7 cells were cultured on the 3D printed scaffolds for 3 weeks. 3D printed SG scaffolds without DCL along with 2D films (SG and SG-DCL) and 2D culture on tissue culture Petri dish control were used for comparative studies. The DCL matrix showed the absence of cells in histology and SEM. The combined SG-DCL ink at all of the studied DCL percentages (1-10%) revealed shear-thinning behavior in the printable range. The storage modulus value for the SG-DCL ink at all DCL percentages was higher than the loss modulus. In comparison to 2D controls, hepatic cells cultured on 3D SG-DCL revealed increased proliferation until 2 weeks and an upregulated expression of hepatocyte markers, including asialoglycoprotein receptor 1 (ASGR1). The Wnt pathway gene ß-catenin was upregulated by more than 4-fold in 3D SG-DCL on day 3, while it showed a decline on day 7 as compared to 3D SG and also 2D controls. The expression of the epithelial cell adhesion molecule (EpCAM) was however lower in both 2D SG-DCL (2-fold) and 3D SG-DCL (2.5-fold) as compared to that in 2D controls. Immunofluorescence studies validated the protein expression of ASGR1 in 3D SG-DCL. Albumin (ALB) was not identified on SG scaffolds but prominently expressed in 3D SG-DCL constructs. In comparison to 2D SG, both ALB (1.8-fold) and urea (5-fold) were enhanced in cells cultured on 3D SG-DCL on day 7 of culture. Hence, the SG-DCL 3D printed scaffolds provide a conducive microenvironment for elevating differentiation and functions of hepatic cells possibly through an involvement of the Wnt/ß-catenin signaling pathway.


Assuntos
Seda , Alicerces Teciduais , Animais , Diferenciação Celular , Fígado , Impressão Tridimensional , Ratos
9.
Cancer Lett ; 504: 58-66, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33582211

RESUMO

Organoids are three-dimensional cell cultures mostly from tissue-resident or embryonic stem cells (one or multiple) on hydrogels along with defined growth factors. Currently, matrigel is the most commonly employed matrix for 3D organoid cultures. However, certain undesirable attributes of matrigel have paved the way for several other natural and synthetic hydrogel scaffolds for organoid cultures. In this review, we discuss the constraints of matrigel and describe other alternative scaffolds that have been used for organoid cultures. Given the potential of organoids in a plethora of therapeutic and pharmaceutical applications, it is indeed imperative to develop defined and customized hydrogels other than the matrigel.


Assuntos
Colágeno/química , Laminina/química , Organoides/metabolismo , Proteoglicanas/química , Combinação de Medicamentos , Humanos , Hidrogéis/química , Neoplasias/patologia , Técnicas de Cultura de Órgãos , Células-Tronco/citologia
10.
J Clin Exp Hepatol ; 10(4): 275-283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655229

RESUMO

AIM: An impaired hepatocyte proliferation during severe liver injury causes the proliferation of hepatic progenitor cells (HPCs), also called as the ductular reaction (DR). In the present study, we studied the role of key angiogenic factors in HPC-mediated DR in nonalcoholic steatohepatitis (NASH). METHODS: Liver biopsies from patients with NASH (n = 14) were included in the study. Patients with NASH were divided in two groups, early and late fibrosis (based on fibrosis staging). Biopsies were used to analyze the gene expression by quantitative real-time polymerase chain reaction and immunohistochemical (IHC) staining for two markers of DR, viz, CK19 and epithelial cell adhesion molecule (EpCAM). Cocultures were performed between steatotic human umbilical vein endothelial cells (HUVECs) and LX2 and Huh7 cells. Enzyme-linked immunosorbent assays were performed to measure levels of vascular endothelial growth factor (VEGF) in coculture studies. Next, Huh7 cells were treated with VEGF, and proliferation was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assays. The number of EpCAM-positive cells was analyzed by flow cytometry. RESULTS: Of all the angiogenic factors, the gene expression of VEGF and angiopoietin 2 (Ang2) was significantly different between patients with NASH in the early and late fibrosis groups (P < 0.05 for both). Both VEGF and Ang2 also correlated significantly with the IHC scores of CK19 and EpCAM in the study group. In the in vitro studies, VEGF levels were significantly increased when Huh7 cells were cocultured with steatotic HUVECs and LX2 cells. The proliferation and percentage of EpCAM-positive cells was increased when Huh7 cells were treated with VEGF. CONCLUSION: Our study indicates an important contribution of VEGF toward the activation of HPC-mediated regeneration and DR in NASH.

11.
Front Physiol ; 11: 617, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595520

RESUMO

BACKGROUND: Circulating cirrhotic endothelial progenitor cells (EPC) interact with both liver sinusoidal endothelial cells (LSEC) and hepatic stellate cells (HSC) and promote angiogenesis in vitro. This study evaluated the effect of cirrhotic and control EPCs on hepatic angiogenesis, microcirculation, and fibrosis in vivo in rat models of cirrhosis. METHODOLOGY: Animal models of cirrhosis were prepared by bile duct ligation (BDL). Circulating EPCs isolated from healthy human and cirrhotic blood were characterized by flow cytometry, cultured and administered through the tail vein in BDL rats after 2 weeks of ligation. The cells were given thrice a week for 2 weeks. The untreated group of BDL rats received only saline. Fibrosis was evaluated by Masson's trichrome staining. Dedifferentiated LSECs were identified by the expression of CD31, and activated HSCs were marked as alpha-SMA-positive cells and were studied by immunohistochemistry and western blotting in saline-, healthy EPC-, and cirrhotic EPC-treated rats. In vivo, hepatic and systemic hemodynamic parameters were evaluated. Liver functions were evaluated. RESULTS: In comparison to controls, BDL rats revealed an increase of fibrosis and angiogenesis. Among the treated rats, cirrhotic EPC-treated rats had increased fibrosis grade as compared to healthy EPC-treated and saline-treated rats. There was an increase of both fibrosis and angiogenesis markers, alpha-SMA and CD31 in cirrhotic EPC-treated rats as compared to healthy EPC-treated and saline-treated rats in immunohistochemistry and western blot studies. Cirrhotic EPC-treated BDL rats had high portal pressure and portal blood flow with significantly elevated hepatic vascular resistance in comparison with healthy EPC- and saline-treated BDL animals, without significant differences in mean arterial pressure. Cirrhotic EPC-treated BDL rats also showed a substantial increase in the hepatic expression of angiogenic receptors, VEGFR2 and CXCR4 in comparison with saline-treated rats. CONCLUSION: The study suggests that transplantation of cirrhotic EPCs enhances LSEC differentiation and angiogenesis, activates HSCs and worsens fibrosis, thus resulting in hepatic hemodynamic derangements in BDL-induced cirrhosis.

12.
Cells ; 8(10)2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635436

RESUMO

Given the important role of angiogenesis in liver pathology, the current study investigated the role of Runt-related transcription factor 1 (RUNX1), a regulator of developmental angiogenesis, in the pathogenesis of non-alcoholic steatohepatitis (NASH). Quantitative RT-PCRs and a transcription factor analysis of angiogenesis-associated differentially expressed genes in liver tissues of healthy controls, patients with steatosis and NASH, indicated a potential role of RUNX1 in NASH. The gene expression of RUNX1 was correlated with histopathological attributes of patients. The protein expression of RUNX1 in liver was studied by immunohistochemistry. To explore the underlying mechanisms, in vitro studies using RUNX1 siRNA and overexpression plasmids were performed in endothelial cells (ECs). RUNX1 expression was significantly correlated with inflammation, fibrosis and NASH activity score in NASH patients. Its expression was conspicuous in liver non-parenchymal cells. In vitro, factors from steatotic hepatocytes and/or VEGF or TGF- significantly induced the expression of RUNX1 in ECs. RUNX1 regulated the expression of angiogenic and adhesion molecules in ECs, including CCL2, PECAM1 and VCAM1, which was shown by silencing or over-expression of RUNX1. Furthermore, RUNX1 increased the angiogenic activity of ECs. This study reports that steatosis-induced RUNX1 augmented the expression of adhesion and angiogenic molecules and properties in ECs and may be involved in enhancing inflammation and disease severity in NASH.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fígado/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/metabolismo , Camundongos , Ácido Palmítico/farmacologia
13.
Front Oncol ; 9: 308, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069171

RESUMO

Background: Hepatitis B-X Protein (HBx) encoded in Hepatitis B virus (HBV) is known to play a critical role in development and progression of HBV induced hepatocellular carcinoma (HCC). HBx interacts with and activates various cells in HCC microenvironment to promote tumor initiation, progression and invasion. In this study, we investigated how surrounding stromal cells interact with HBx-infected hepatoma cells by a series of in vitro co-culture studies. Methods: Huh7 hepatoma cells were cultured and transfected with the mammalian expression vector pGFP-HBx. Co-culture assays were performed between HBx-transfected Huh7 cells and conditioned media (CM) from stromal cells [endothelial cell lines (HUVECs) and hepatic stellate cell lines (LX2 cells)]. The effect of these interactions was studied by a series of functional assays like chemotaxis, invasion, and wound healing scratch assays. Also, quantitative real time (RT)-PCRs of the mesenchymal genes was performed in the hepatoma cells with and without the co-cultures. Hep3B cells with an integrated HBV genome were taken as positive controls. Results: HBx-transfected Huh7 cells cultured in presence of CM from HUVECs illustrated enhanced migration and tube formation as compared to HBx-transfected cells cultured alone or co-cultured with LX2 cells. HBx-transfected hepatoma cells incubated with CM from HUVECs also expressed mesenchymal genes including Thy1, CDH2, TGFßR1, VIM, and CD133. ELISAs revealed increased levels of TGF-ß in CM from HUVECs. In comparison to unstimulated HBx-transfected Huh7 cells, TGF-ß stimulated cells displayed increased invasive properties and mesenchymal gene expression. RT-PCR and flow cytometry analysis further demonstrated that incubation with either CM from HUVECs or TGF-ß significantly increased the expression of a stemness marker, CD133 in HBx-infected hepatoma cells. Gene inhibition experiments with CD133 siRNA showed a downregulation of mesenchymal gene expression and properties in TGF-ß induced HBx-infected hepatoma cells as compared to that observed in control siRNA treated cells, indicating CD133 as one of the key molecules affecting epithelial to mesenchymal transition (EMT) in HBx-infected cells. Conclusion: The study indicates that secretory factors like TGF-ß from neighboring endothelial cells may enhance expression of CD133 and impart an aggressive EMT phenotype to HBx-infected hepatoma cells in HBV induced HCC.

14.
Cell Biol Int ; 42(9): 1212-1220, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29851177

RESUMO

Studies have demonstrated that aging is associated with a substantial decline in numbers and angiogenic activity of endothelial progenitor cells (EPCs). In view of senescence being an important regulator of age-related cell survival and function, in the current study, we correlated EPCs numbers and functions with their senescence status and mechanisms in young and elderly subjects. Healthy young subjects (n = 30, below 60 y) and old subjects (n = 30, equal to or above 60 y) participated in the study. Subjects had no significant disease or risk factors of disease and aging was the only risk factor in the aged subjects. Enumeration of CD34-vegfr2 dual positive EPCs was performed. The ex vivo culture of EPCs was done to study colony formation, migration, and senescence-associated beta-galactosidase activity. The expression of cell cycle and senescence regulatory proteins including, p53, p21, and sirtuin 1 (SIRT1), a deacetylase protein was studied in cultured EPCs by RT-PCR and immunofluorescence staining. In vivo proliferation, ex vivo colonies, migration, and secretory ability of EPCs was significantly higher in young subjects than that in elderly subjects. EPCs in old subjects showed enhanced senescence and decreased expression of SIRT1 in comparison to that observed in young subjects. An inhibition of SIRT1 in EPCs of young subjects led to significant increase in senescence and reduction of cell differentiation. The study suggests that EPCs have decreased proliferation and functions in aged subjects due to increased senescence which may be attributable to decreased expression of SIRT1.


Assuntos
Senescência Celular/fisiologia , Células Progenitoras Endoteliais/metabolismo , Sirtuína 1/metabolismo , Adulto , Fatores Etários , Idoso , Ciclo Celular , Divisão Celular , Movimento Celular , Células Cultivadas , Células Progenitoras Endoteliais/fisiologia , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Transdução de Sinais , Sirtuína 1/genética , Células-Tronco/metabolismo , Transcriptoma/genética , Adulto Jovem , beta-Galactosidase/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA