Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Adv Sci (Weinh) ; : e2309268, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704686

RESUMO

Broadly neutralizing antibodies are proposed as therapeutic and prophylactic agents against HIV-1, but their potency and breadth are less than optimal. This study describes the immunization of a llama with the prefusion-stabilized HIV-1 envelope (Env) trimer, BG505 DS-SOSIP, and the identification and improvement of potent neutralizing nanobodies recognizing the CD4-binding site (CD4bs) of vulnerability. Two of the vaccine-elicited CD4bs-targeting nanobodies, G36 and R27, when engineered into a triple tandem format with llama IgG2a-hinge region and human IgG1-constant region (G36×3-IgG2a and R27×3-IgG2a), neutralized 96% of a multiclade 208-strain panel at geometric mean IC80s of 0.314 and 0.033 µg mL-1, respectively. Cryo-EM structures of these nanobodies in complex with Env trimer revealed the two nanobodies to neutralize HIV-1 by mimicking the recognition of the CD4 receptor. To enhance their neutralizing potency and breadth, nanobodies are linked to the light chain of the V2-apex-targeting broadly neutralizing antibody, CAP256V2LS. The resultant human-llama bispecific antibody CAP256L-R27×3LS exhibited ultrapotent neutralization and breadth exceeding other published HIV-1 broadly neutralizing antibodies, with pharmacokinetics determined in FcRn-Fc mice similar to the parent CAP256V2LS. Vaccine-elicited llama nanobodies, when combined with V2-apex broadly neutralizing antibodies, may therefore be able to fulfill anti-HIV-1 therapeutic and prophylactic clinical goals.

2.
Immunity ; 57(3): 574-586.e7, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38430907

RESUMO

Continuously evolving influenza viruses cause seasonal epidemics and pose global pandemic threats. Although viral neuraminidase (NA) is an effective drug and vaccine target, our understanding of the NA antigenic landscape still remains incomplete. Here, we describe NA-specific human antibodies that target the underside of the NA globular head domain, inhibit viral propagation of a wide range of human H3N2, swine-origin variant H3N2, and H2N2 viruses, and confer both pre- and post-exposure protection against lethal H3N2 infection in mice. Cryo-EM structures of two such antibodies in complex with NA reveal non-overlapping epitopes covering the underside of the NA head. These sites are highly conserved among N2 NAs yet inaccessible unless the NA head tilts or dissociates. Our findings help guide the development of effective countermeasures against ever-changing influenza viruses by identifying hidden conserved sites of vulnerability on the NA underside.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Animais , Camundongos , Suínos , Proteínas Virais/genética , Neuraminidase , Vírus da Influenza A Subtipo H3N2 , Anticorpos Monoclonais , Anticorpos Antivirais
3.
bioRxiv ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38313289

RESUMO

Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions1-4, but the evolutionary processes underlying these observations are incompletely understood. Here we used high-throughput, single-genome amplification and sequencing (HT-SGS) to obtain up to ~103 SARS-CoV-2 spike gene sequences in each of 184 respiratory samples from 22 people with HIV (PWH) and 25 people without HIV (PWOH). Twelve of 22 PWH had advanced HIV infection, defined by peripheral blood CD4 T cell counts (i.e., CD4 counts) <200 cells/µL. In PWOH and PWH with CD4 counts ≥200 cells/µL, most single-genome spike sequences in each person matched one haplotype that predominated throughout the infection. By contrast, people with advanced HIV showed elevated intra-host spike diversity with a median of 46 haplotypes per person (IQR 14-114). Higher intra-host spike diversity immediately after COVID-19 symptom onset predicted longer SARS-CoV-2 RNA shedding among PWH, and intra-host spike diversity at this timepoint was significantly higher in people with advanced HIV than in PWOH. Composition of spike sequence populations in people with advanced HIV fluctuated rapidly over time, with founder sequences often replaced by groups of new haplotypes. These population-level changes were associated with a high total burden of intra-host mutations and positive selection at functionally important residues. In several cases, delayed emergence of detectable serum binding to spike was associated with positive selection for presumptive antibody-escape mutations. Taken together, our findings show remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern (VOCs).

4.
Nat Commun ; 14(1): 7593, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989731

RESUMO

The HIV-1 fusion peptide (FP) represents a promising vaccine target, but global FP sequence diversity among circulating strains has limited anti-FP antibodies to ~60% neutralization breadth. Here we evolve the FP-targeting antibody VRC34.01 in vitro to enhance FP-neutralization using site saturation mutagenesis and yeast display. Successive rounds of directed evolution by iterative selection of antibodies for binding to resistant HIV-1 strains establish a variant, VRC34.01_mm28, as a best-in-class antibody with 10-fold enhanced potency compared to the template antibody and ~80% breadth on a cross-clade 208-strain neutralization panel. Structural analyses demonstrate that the improved paratope expands the FP binding groove to accommodate diverse FP sequences of different lengths while also recognizing the HIV-1 Env backbone. These data reveal critical antibody features for enhanced neutralization breadth and potency against the FP site of vulnerability and accelerate clinical development of broad HIV-1 FP-targeting vaccines and therapeutics.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Peptídeos , Sequência de Aminoácidos , Vacinas de Subunidades Antigênicas , Testes de Neutralização , Produtos do Gene env do Vírus da Imunodeficiência Humana
5.
Vaccines (Basel) ; 11(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37766115

RESUMO

New vaccine delivery technologies, such as mRNA, have played a critical role in the rapid and efficient control of SARS-CoV-2, helping to end the COVID-19 pandemic. Enveloped virus-like particles (eVLPs) are often more immunogenic than protein subunit immunogens and could be an effective vaccine platform. Here, we investigated whether the genetic delivery of eVLPs could achieve strong immune responses in mice as previously reported with the immunization of in vitro purified eVLPs. We utilized Newcastle disease virus-like particles (NDVLPs) to display SARS-CoV-2 prefusion-stabilized spikes from the WA-1 or Beta variant (S-2P or S-2Pᵦ, respectively) and evaluated neutralizing murine immune responses achieved by a single-gene-transcript DNA construct for the WA-1 or Beta variant (which we named S-2P-NDVLP-1T and S-2Pᵦ-NDVLP-1T, respectively), by multiple-gene-transcript DNA constructs for the Beta variant (S-2Pᵦ-NDVLP-3T), and by a protein subunit-DNA construct for the WA-1 or Beta variant (S-2P-TM or S-2Pᵦ-TM, respectively). The genetic delivery of S-2P-NDVLP-1T or S-2Pᵦ-NDVLP-1T yielded modest neutralizing responses after a single immunization and high neutralizing responses after a second immunization, comparable to previously reported results in mice immunized with in vitro purified S-2P-NDVLPs. Notably, genetic delivery of S-2Pᵦ-NDVLP-3T yielded significantly higher neutralizing responses in mice after a second immunization than S-2Pᵦ-NDVLP-1T or S-2Pᵦ-TM. Genetic delivery also elicited high spike-specific T-cell responses. Collectively, these results indicate that genetic delivery can provide an effective means to immunize eVLPs and that a multiple-gene transcript eVLP platform may be especially efficacious and inform the design of improved vaccines.

6.
iScience ; 26(8): 107403, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554450

RESUMO

Soluble HIV-1-envelope (Env) trimers elicit immune responses that target their solvent-exposed protein bases, the result of removing these trimers from their native membrane-bound context. To assess whether glycosylation could limit these base responses, we introduced sequons encoding potential N-linked glycosylation sites (PNGSs) into base-proximal regions. Expression and antigenic analyses indicated trimers bearing six-introduced PNGSs to have reduced base recognition. Cryo-EM analysis revealed trimers with introduced PNGSs to be prone to disassembly and introduced PNGS to be disordered. Protein-base and glycan-base trimers induced reciprocally symmetric ELISA responses, in which only a small fraction of the antibody response to glycan-base trimers recognized protein-base trimers and vice versa. EM polyclonal epitope mapping revealed glycan-base trimers -even those that were stable biochemically- to elicit antibodies that recognized disassembled trimers. Introduced glycans can thus mask the protein base but their introduction may yield neo-epitopes that dominate the immune response.

7.
Cell Rep ; 42(7): 112755, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436899

RESUMO

Elicitation of antibodies that neutralize the tier-2 neutralization-resistant isolates that typify HIV-1 transmission has been a long-sought goal. Success with prefusion-stabilized envelope trimers eliciting autologous neutralizing antibodies has been reported in multiple vaccine-test species, though not in humans. To investigate elicitation of HIV-1 neutralizing antibodies in humans, here, we analyze B cells from a phase I clinical trial of the "DS-SOSIP"-stabilized envelope trimer from strain BG505, identifying two antibodies, N751-2C06.01 and N751-2C09.01 (named for donor-lineage.clone), that neutralize the autologous tier-2 strain, BG505. Though derived from distinct lineages, these antibodies form a reproducible antibody class that targets the HIV-1 fusion peptide. Both antibodies are highly strain specific, which we attribute to their partial recognition of a BG505-specific glycan hole and to their binding requirements for a few BG505-specific residues. Prefusion-stabilized envelope trimers can thus elicit autologous tier-2 neutralizing antibodies in humans, with initially identified neutralizing antibodies recognizing the fusion-peptide site of vulnerability.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Anticorpos Neutralizantes , Produtos do Gene env do Vírus da Imunodeficiência Humana , Anticorpos Anti-HIV , Peptídeos
8.
Cell Rep ; 42(7): 112711, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436900

RESUMO

Broadly neutralizing antibodies (bNAbs) against HIV can reduce viral transmission in humans, but an effective therapeutic will require unusually high breadth and potency of neutralization. We employ the OSPREY computational protein design software to engineer variants of two apex-directed bNAbs, PGT145 and PG9RSH, resulting in increases in potency of over 100-fold against some viruses. The top designed variants improve neutralization breadth from 39% to 54% at clinically relevant concentrations (IC80 < 1 µg/mL) and improve median potency (IC80) by up to 4-fold over a cross-clade panel of 208 strains. To investigate the mechanisms of improvement, we determine cryoelectron microscopy structures of each variant in complex with the HIV envelope trimer. Surprisingly, we find the largest increases in breadth to be a result of optimizing side-chain interactions with highly variable epitope residues. These results provide insight into mechanisms of neutralization breadth and inform strategies for antibody design and improvement.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Testes de Neutralização
9.
Cell ; 186(12): 2672-2689.e25, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295404

RESUMO

Alphaviruses are RNA viruses that represent emerging public health threats. To identify protective antibodies, we immunized macaques with a mixture of western, eastern, and Venezuelan equine encephalitis virus-like particles (VLPs), a regimen that protects against aerosol challenge with all three viruses. Single- and triple-virus-specific antibodies were isolated, and we identified 21 unique binding groups. Cryo-EM structures revealed that broad VLP binding inversely correlated with sequence and conformational variability. One triple-specific antibody, SKT05, bound proximal to the fusion peptide and neutralized all three Env-pseudotyped encephalitic alphaviruses by using different symmetry elements for recognition across VLPs. Neutralization in other assays (e.g., chimeric Sindbis virus) yielded variable results. SKT05 bound backbone atoms of sequence-diverse residues, enabling broad recognition despite sequence variability; accordingly, SKT05 protected mice against Venezuelan equine encephalitis virus, chikungunya virus, and Ross River virus challenges. Thus, a single vaccine-elicited antibody can protect in vivo against a broad range of alphaviruses.


Assuntos
Alphavirus , Vírus da Encefalite Equina Venezuelana , Vacinas Virais , Animais , Camundongos , Vírus da Encefalite Equina Venezuelana/genética , Anticorpos Antivirais , Macaca
10.
MAbs ; 15(1): 2223350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37345226

RESUMO

The amino-acid composition of the immunoglobulin variable region has been observed to impact antibody pharmacokinetics (PK). Here, we sought to improve the PK of the broad HIV-1-neutralizing VRC01-class antibodies, VRC07-523LS and N6LS, by reducing the net positive charge in their variable domains. We used a structure-guided approach to generate a panel of antibody variants incorporating select Arg or Lys substituted to Asp, Gln, Glu, or Ser. The engineered variants exhibited reduced affinity to heparin, reduced polyreactivity, and improved PK in human FcRn-transgenic mice. One variant, VRC07-523LS.v34, with three charge substitutions, had an observed in vivo half-life and an estimated human half-life of 10.8 and 60 days, respectively (versus 5.4 and 38 days for VRC07-523LS) and retained functionality, neutralizing 92% of a 208-strain panel at a geometric mean IC80 <1 µg/mL. Another variant, N6LS.C49, with two charge substitutions, had an observed in vivo half-life and an estimated human half-life of 14.5 and 80 days (versus 9.0 and 44 days for N6LS) and neutralized ~80% of 208 strains at a geometric mean IC80 <1 µg/mL. Since Arg and Lys residues are prevalent in human antibodies, we propose substitution of select Arg or Lys with Asp, Gln, Glu, or Ser in the framework region as a general means to improve PK of therapeutic antibodies.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Camundongos , Animais , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes , Camundongos Transgênicos , Infecções por HIV/tratamento farmacológico , Anticorpos Neutralizantes
11.
J Virol ; 97(5): e0160422, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098956

RESUMO

While neutralizing antibodies that target the HIV-1 fusion peptide have been elicited in mice by vaccination, antibodies reported thus far have been from only a single antibody class that could neutralize ~30% of HIV-1 strains. To explore the ability of the murine immune system to generate cross-clade neutralizing antibodies and to investigate how higher breadth and potency might be achieved, we tested 17 prime-boost regimens that utilized diverse fusion peptide-carrier conjugates and HIV-1 envelope trimers with different fusion peptides. We observed priming in mice with fusion peptide-carrier conjugates of variable peptide length to elicit higher neutralizing responses, a result we confirmed in guinea pigs. From vaccinated mice, we isolated 21 antibodies, belonging to 4 distinct classes of fusion peptide-directed antibodies capable of cross-clade neutralization. Top antibodies from each class collectively neutralized over 50% of a 208-strain panel. Structural analyses - both X-ray and cryo-EM - revealed each antibody class to recognize a distinct conformation of fusion peptide and to have a binding pocket capable of accommodating diverse fusion peptides. Murine vaccinations can thus elicit diverse neutralizing antibodies, and altering peptide length during prime can improve the elicitation of cross-clade responses targeting the fusion peptide site of HIV-1 vulnerability. IMPORTANCE The HIV-1 fusion peptide has been identified as a site for elicitation of broadly neutralizing antibodies, with prior studies demonstrating that priming with fusion peptide-based immunogens and boosting with soluble envelope (Env) trimers can elicit cross-clade HIV-1-neutralizing responses. To improve the neutralizing breadth and potency of fusion peptide-directed responses, we evaluated vaccine regimens that incorporated diverse fusion peptide-conjugates and Env trimers with variation in fusion peptide length and sequence. We found that variation in peptide length during prime elicits enhanced neutralizing responses in mice and guinea pigs. We identified vaccine-elicited murine monoclonal antibodies from distinct classes capable of cross-clade neutralization and of diverse fusion peptide recognition. Our findings lend insight into improved immunogens and regimens for HIV-1 vaccine development.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , Soropositividade para HIV , HIV-1 , Animais , Cobaias , Camundongos , Anticorpos Anti-HIV , Isotipos de Imunoglobulinas , Vacinação , Peptídeos , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Produtos do Gene env do Vírus da Imunodeficiência Humana , Infecções por HIV/prevenção & controle
12.
MAbs ; 15(1): 2165390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36729903

RESUMO

Antibody CAP256-VRC26.25 targets the second hypervariable region (V2) at the apex of the HIV envelope (Env) trimer with extraordinary neutralization potency, although less than optimal breadth. To improve breadth, we linked the light chain of CAP256V2LS, an optimized version of CAP256-VRC26.25 currently under clinical evaluation, to the llama nanobody J3, which has broad CD4-binding site-directed neutralization. The J3-linked bispecific antibody exhibited improved breadth and potency over both J3 and CAP256V2LS, indicative of synergistic neutralization. The cryo-EM structure of the bispecific antibody in complex with a prefusion-closed Env trimer revealed simultaneous binding of J3 and CAP256V2LS. We further optimized the pharmacokinetics of the bispecific antibody by reducing the net positive charge of J3. The optimized bispecific antibody, which we named CAP256.J3LS, had a half-life similar to CAP256V2LS in human FcRn knock-in mice and exhibited suitable auto-reactivity, manufacturability, and biophysical risk. CAP256.J3LS neutralized over 97% of a multiclade 208-strain panel (geometric mean concentration for 80% inhibition (IC80) 0.079 µg/ml) and 100% of a 100-virus clade C panel (geometric mean IC80 of 0.05 µg/ml), suggesting its anti-HIV utility especially in regions where clade C dominates.


Assuntos
Anticorpos Biespecíficos , Infecções por HIV , HIV-1 , Humanos , Animais , Camundongos , Anticorpos Neutralizantes , Testes de Neutralização , Anticorpos Anti-HIV , Sítios de Ligação
13.
Ann N Y Acad Sci ; 1519(1): 153-166, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382536

RESUMO

Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.


Assuntos
Anticorpos Biespecíficos , Humanos , Anticorpos Biespecíficos/uso terapêutico , Imunoterapia
14.
Vaccines (Basel) ; 12(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38250850

RESUMO

The receptor-binding domain (RBD) of the SARS-CoV-2 spike is a primary target of neutralizing antibodies and a key component of licensed vaccines. Substantial mutations in RBD, however, enable current variants to escape immunogenicity generated by vaccination with the ancestral (WA1) strain. Here, we produce and assess self-assembling nanoparticles displaying RBDs from WA1 and BA.5 strains by using the SpyTag:SpyCatcher system for coupling. We observed both WA1- and BA.5-RBD nanoparticles to degrade substantially after a few days at 37 °C. Incorporation of nine RBD-stabilizing mutations, however, increased yield ~five-fold and stability such that more than 50% of either the WA1- or BA.5-RBD nanoparticle was retained after one week at 37 °C. Murine immunizations revealed that the stabilized RBD-nanoparticles induced ~100-fold higher autologous neutralization titers than the prefusion-stabilized (S2P) spike at a 2 µg dose. Even at a 25-fold lower dose where S2P-induced neutralization titers were below the detection limit, the stabilized BA.5-RBD nanoparticle induced homologous titers of 12,795 ID50 and heterologous titers against WA1 of 1767 ID50. Assessment against a panel of ß-coronavirus variants revealed both the stabilized BA.5-RBD nanoparticle and the stabilized WA1-BA.5-(mosaic)-RBD nanoparticle to elicit much higher neutralization breadth than the stabilized WA1-RBD nanoparticle. The extraordinary titer and high neutralization breadth elicited by stabilized RBD nanoparticles from strain BA.5 make them strong candidates for next-generation COVID-19 vaccines.

15.
Nat Struct Mol Biol ; 29(11): 1080-1091, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36344847

RESUMO

Simian immunodeficiency viruses (SIVs) are lentiviruses that naturally infect non-human primates of African origin and seeded cross-species transmissions of HIV-1 and HIV-2. Here we report prefusion stabilization and cryo-EM structures of soluble envelope (Env) trimers from rhesus macaque SIV (SIVmac) in complex with neutralizing antibodies. These structures provide residue-level definition for SIV-specific disulfide-bonded variable loops (V1 and V2), which we used to delineate variable-loop coverage of the Env trimer. The defined variable loops enabled us to investigate assembled Env-glycan shields throughout SIV, which we found to comprise both N- and O-linked glycans, the latter emanating from V1 inserts, which bound the O-link-specific lectin jacalin. We also investigated in situ SIVmac-Env trimers on virions, determining cryo-electron tomography structures at subnanometer resolutions for an antibody-bound complex and a ligand-free state. Collectively, these structures define the prefusion-closed structure of the SIV-Env trimer and delineate variable-loop and glycan-shielding mechanisms of immune evasion conserved throughout SIV evolution.


Assuntos
Anticorpos Neutralizantes , HIV-1 , Animais , Microscopia Crioeletrônica , Macaca mulatta/metabolismo , HIV-1/metabolismo , Tomografia com Microscopia Eletrônica , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Anticorpos Anti-HIV
16.
Immunity ; 55(12): 2405-2418.e7, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36356572

RESUMO

Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs). Immunized mice were protected from multiple group 1 and 2 viruses, and all animal models showed broad serum-neutralizing activity. A bnAb isolated from an immunized NHP broadly neutralized and protected against diverse viruses, including H5N1 and H7N9. Genetic and structural analyses revealed strong homology between macaque and human bnAbs, illustrating common biophysical constraints for acquiring cross-group specificity. Vaccine elicitation of stem-directed cross-group-protective immunity represents a step toward the development of broadly protective influenza vaccines.


Assuntos
Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Hemaglutininas , Anticorpos Amplamente Neutralizantes , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Anticorpos Antivirais , Furões , Anticorpos Neutralizantes , Imunização
17.
Structure ; 30(9): 1233-1244.e7, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841885

RESUMO

Immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike elicits diverse antibodies, but it is unclear if any of the antibodies can neutralize broadly against other beta-coronaviruses. Here, we report antibody WS6 from a mouse immunized with mRNA encoding the SARS-CoV-2 spike. WS6 bound diverse beta-coronavirus spikes and neutralized SARS-CoV-2 variants, SARS-CoV, and related sarbecoviruses. Epitope mapping revealed WS6 to target a region in the S2 subunit, which was conserved among SARS-CoV-2, Middle East respiratory syndrome (MERS)-CoV, and hCoV-OC43. The crystal structure at 2 Å resolution of WS6 revealed recognition to center on a conserved S2 helix, which was occluded in both pre- and post-fusion spike conformations. Structural and neutralization analyses indicated WS6 to neutralize by inhibiting fusion and post-viral attachment. Comparison of WS6 with other recently identified antibodies that broadly neutralize beta-coronaviruses indicated a stem-helical supersite-centered on hydrophobic residues Phe1148, Leu1152, Tyr1155, and Phe1156-to be a promising target for vaccine design.


Assuntos
COVID-19 , Vacinas , Animais , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
18.
J Exp Med ; 219(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35736810

RESUMO

The monoclonal antibody CIS43 targets the Plasmodium falciparum circumsporozoite protein (PfCSP) and prevents malaria infection in humans for up to 9 mo following a single intravenous administration. To enhance the potency and clinical utility of CIS43, we used iterative site-saturation mutagenesis and DNA shuffling to screen precise gene-variant yeast display libraries for improved PfCSP antigen recognition. We identified several mutations that improved recognition, predominately in framework regions, and combined these to produce a panel of antibody variants. The most improved antibody, CIS43_Var10, had three mutations and showed approximately sixfold enhanced protective potency in vivo compared to CIS43. Co-crystal and cryo-electron microscopy structures of CIS43_Var10 with the peptide epitope or with PfCSP, respectively, revealed functional roles for each of these mutations. The unbiased site-directed mutagenesis and screening pipeline described here represent a powerful approach to enhance protective potency and to enable broader clinical use of antimalarial antibodies.


Assuntos
Antimaláricos , Vacinas Antimaláricas , Anticorpos Antiprotozoários , Antimaláricos/farmacologia , Microscopia Crioeletrônica , Humanos , Plasmodium falciparum , Proteínas de Protozoários , Saccharomyces cerevisiae/genética
19.
ACS Chem Biol ; 17(6): 1450-1459, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35537058

RESUMO

Lectins, carbohydrate-binding proteins of nonimmune origin, bind to carbohydrates and glycan shields present on the surfaces of cells and viral spike proteins. Lectins thus hold great promise as therapeutic and diagnostic proteins, exemplified by their potent antiviral activities and the desire to engineer synthetic carbohydrate receptors based on lectin recognition principles. Here, we describe a new carbohydrate-binding architectural motif─namely, a C3-symmetric tyrosine-based aromatic core, present in the therapeutic lectin griffithsin (GRFT). By using structure-based amino acid substitutions, X-ray crystallography, molecular dynamics (MD) simulations, and HIV-1 neutralization assays, we show that this core is critical for potent (pM) antiviral activity and nanomolar binding to the glycan shield largely consisting of high mannose glycans. Crystal structures and MD simulations show that CH-π interactions stabilize the aromatic cluster to maintain the three pseudo-symmetric carbohydrate-binding sites, nonaromatic amino acid substitutions (Tyr to Ala) abrogate antiviral activity, and increasing the aromatic CH-π edge-to-centroid interface via a Tyr to Trp substitution yields a GRFT variant with improved potency and increased residence time of Man-9 observed in MD simulations. NMR titrations of a Tyr-to-Ala variant indicate that disruption of the aromatic prevents the intermolecular crosslinking between two equivalents of Man-9 and one carbohydrate-binding face observed in wild-type GRFT and known to be critical for picomolar potency of this lectin. This C3-symmetric aromatic core defines a new recognition motif for the design of carbohydrate receptors and suggests principles for engineering known lectins to have increased affinity and stability.


Assuntos
Fármacos Anti-HIV , HIV-1 , Fármacos Anti-HIV/química , Carboidratos/química , HIV-1/metabolismo , Humanos , Lectinas/química , Lectinas de Plantas/química
20.
Structure ; 30(6): 862-875.e4, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35413243

RESUMO

Nanobodies can achieve remarkable neutralization of genetically diverse pathogens, including HIV-1. To gain insight into their recognition, we determined crystal structures of four llama nanobodies (J3, A12, C8, and D7), all of which targeted the CD4-binding site, in complex with the HIV-1 envelope (Env) gp120 core, and determined a cryoelectron microscopy (cryo-EM) structure of J3 with the Env trimer. Crystal and cryo-EM structures of J3 complexes revealed this nanobody to mimic binding to the prefusion-closed trimer for the primary site of CD4 recognition as well as a secondary quaternary site. In contrast, crystal structures of A12, C8, and D7 with gp120 revealed epitopes that included portions of the gp120 inner domain, inaccessible on the prefusion-closed trimer. Overall, these structures explain the broad and potent neutralization of J3 and limited neutralization of A12, C8, and D7, which utilized binding modes incompatible with the neutralization-targeted prefusion-closed conformation of Env.


Assuntos
Camelídeos Americanos , HIV-1 , Anticorpos de Domínio Único , Animais , Anticorpos Neutralizantes/química , Sítios de Ligação , Antígenos CD4 , Camelídeos Americanos/metabolismo , Microscopia Crioeletrônica , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV , HIV-1/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA