Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 30(1): 83-92, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920969

RESUMO

The MEROPS website (https://www.ebi.ac.uk/merops) and database was established in 1996 to present the classification and nomenclature of proteolytic enzymes. This was expanded to include a classification of protein inhibitors of proteolytic enzymes in 2004. Each peptidase or inhibitor is assigned to a distinct identifier, based on its biochemical and biological properties, and homologous sequences are assembled into a family. Families in which the proteins share similar tertiary structures are assembled into a clan. The MEROPS classification is thus a hierarchy with at least three levels (protein-species, family, and clan) showing the evolutionary relationship. Several other data collections have been assembled, which are accessed from all levels in the hierarchy. These include, sequence homologs, selective bibliographies, substrate cleavage sites, peptidase-inhibitor interactions, alignments, and phylogenetic trees. The substrate cleavage collection has been assembled from the literature and includes physiological, pathological, and nonphysiological cleavages in proteins, peptides, and synthetic substrates. In this article, we make recommendations about how best to analyze these data and show analyses to indicate peptidase binding site preferences and exclusions. We also identify peptidases where co-operative binding occurs between adjacent binding sites.


Assuntos
Bases de Dados de Proteínas , Peptídeo Hidrolases , Sequência de Aminoácidos , Sítios de Ligação , Peptídeo Hidrolases/química , Peptídeo Hidrolases/classificação , Peptídeo Hidrolases/genética , Inibidores de Proteases/química , Homologia de Sequência de Aminoácidos
2.
Biochim Biophys Acta Proteins Proteom ; 1868(2): 140345, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31838087

RESUMO

Proteolytic enzymes and their homologues have been classified into clans by comparing the tertiary structures of the peptidase domains, into families by comparing the protein sequences of the peptidase domains, and into protein-species by comparing various attributes including domain architecture, substrate preference, inhibitor interactions, subcellular location, and phylogeny. The results are compared with the earlier classification (Rawlings and Barrett, 1993 [1]). The numbers of sequences, protein-species, families, clans and even catalytic type have substantially increased during the intervening 26 years. The alternative classifications by catalytic type and/or activity are shown not to reflect evolutionary relationships.


Assuntos
Peptídeo Hidrolases/classificação , Animais , Bactérias/enzimologia , Domínio Catalítico , Bases de Dados de Proteínas , Humanos , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Filogenia , Plantas/enzimologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo
3.
Biochimie ; 166: 4-18, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31377195

RESUMO

The distribution of all peptidase homologues across all phyla of organisms was analysed to determine within which kingdom each of the 271 families originated. No family was found to be ubiquitous and even peptidases thought to be essential for life, such as signal peptidase and methionyl aminopeptides are missing from some clades. There are 33 peptidase families common to archaea, bacteria and eukaryotes and are assumed to have originated in the last universal common ancestor (LUCA). These include peptidases with different catalytic types, exo- and endopeptidases, peptidases with different tertiary structures and peptidases from different families but with similar structures. This implies that the different catalytic types and structures pre-date LUCA. Other families have had their origins in the ancestors of viruses, archaea, bacteria, fungi, plants and animals, and a number of families have had their origins in the ancestors of particular phyla. The evolution of peptidases is compared to recent hypotheses about the evolution of organisms.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Eucariotos/enzimologia , Peptídeo Hidrolases , Vírus/enzimologia , Animais , Bases de Dados de Proteínas , Evolução Molecular , Transferência Genética Horizontal , Peptídeo Hidrolases/classificação , Peptídeo Hidrolases/genética , Filogenia
4.
Nucleic Acids Res ; 47(D1): D351-D360, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30398656

RESUMO

The InterPro database (http://www.ebi.ac.uk/interpro/) classifies protein sequences into families and predicts the presence of functionally important domains and sites. Here, we report recent developments with InterPro (version 70.0) and its associated software, including an 18% growth in the size of the database in terms on new InterPro entries, updates to content, the inclusion of an additional entry type, refined modelling of discontinuous domains, and the development of a new programmatic interface and website. These developments extend and enrich the information provided by InterPro, and provide greater flexibility in terms of data access. We also show that InterPro's sequence coverage has kept pace with the growth of UniProtKB, and discuss how our evaluation of residue coverage may help guide future curation activities.


Assuntos
Bases de Dados de Proteínas , Anotação de Sequência Molecular , Animais , Bases de Dados Genéticas , Ontologia Genética , Humanos , Internet , Família Multigênica , Domínios Proteicos/genética , Homologia de Sequência de Aminoácidos , Software , Interface Usuário-Computador
5.
Nucleic Acids Res ; 47(D1): D564-D572, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30364992

RESUMO

Automatic annotation of protein function is routinely applied to newly sequenced genomes. While this provides a fine-grained view of an organism's functional protein repertoire, proteins, more commonly function in a coordinated manner, such as in pathways or multimeric complexes. Genome Properties (GPs) define such functional entities as a series of steps, originally described by either TIGRFAMs or Pfam entries. To increase the scope of coverage, we have migrated GPs to function as a companion resource utilizing InterPro entries. Having introduced GPs-specific versioned releases, we provide software and data via a GitHub repository, and have developed a new web interface to GPs (available at https://www.ebi.ac.uk/interpro/genomeproperties). In addition to exploring each of the 1286 GPs, the website contains GPs pre-calculated for a representative set of proteomes; these results can be used to profile GPs phylogenetically via an interactive viewer. Users can upload novel data to the viewer for comparison with the pre-calculated results. Over the last year, we have added ∼700 new GPs, increasing the coverage of eukaryotic systems, as well as increasing general coverage through automatic generation of GPs from related resources. All data are freely available via the website and the GitHub repository.


Assuntos
Bases de Dados de Proteínas , Genoma , Proteínas/genética , Genoma Microbiano , Redes e Vias Metabólicas/genética , Complexos Multiproteicos/genética , Proteínas/metabolismo , Proteoma
6.
Brief Bioinform ; 20(2): 638-658, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-29897410

RESUMO

Regulation of proteolysis plays a critical role in a myriad of important cellular processes. The key to better understanding the mechanisms that control this process is to identify the specific substrates that each protease targets. To address this, we have developed iProt-Sub, a powerful bioinformatics tool for the accurate prediction of protease-specific substrates and their cleavage sites. Importantly, iProt-Sub represents a significantly advanced version of its successful predecessor, PROSPER. It provides optimized cleavage site prediction models with better prediction performance and coverage for more species-specific proteases (4 major protease families and 38 different proteases). iProt-Sub integrates heterogeneous sequence and structural features and uses a two-step feature selection procedure to further remove redundant and irrelevant features in an effort to improve the cleavage site prediction accuracy. Features used by iProt-Sub are encoded by 11 different sequence encoding schemes, including local amino acid sequence profile, secondary structure, solvent accessibility and native disorder, which will allow a more accurate representation of the protease specificity of approximately 38 proteases and training of the prediction models. Benchmarking experiments using cross-validation and independent tests showed that iProt-Sub is able to achieve a better performance than several existing generic tools. We anticipate that iProt-Sub will be a powerful tool for proteome-wide prediction of protease-specific substrates and their cleavage sites, and will facilitate hypothesis-driven functional interrogation of protease-specific substrate cleavage and proteolytic events.


Assuntos
Biologia Computacional , Peptídeo Hidrolases/metabolismo , Aprendizado de Máquina , Proteólise , Proteoma , Especificidade por Substrato
7.
Brief Bioinform ; 20(6): 2150-2166, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30184176

RESUMO

The roles of proteolytic cleavage have been intensively investigated and discussed during the past two decades. This irreversible chemical process has been frequently reported to influence a number of crucial biological processes (BPs), such as cell cycle, protein regulation and inflammation. A number of advanced studies have been published aiming at deciphering the mechanisms of proteolytic cleavage. Given its significance and the large number of functionally enriched substrates targeted by specific proteases, many computational approaches have been established for accurate prediction of protease-specific substrates and their cleavage sites. Consequently, there is an urgent need to systematically assess the state-of-the-art computational approaches for protease-specific cleavage site prediction to further advance the existing methodologies and to improve the prediction performance. With this goal in mind, in this article, we carefully evaluated a total of 19 computational methods (including 8 scoring function-based methods and 11 machine learning-based methods) in terms of their underlying algorithm, calculated features, performance evaluation and software usability. Then, extensive independent tests were performed to assess the robustness and scalability of the reviewed methods using our carefully prepared independent test data sets with 3641 cleavage sites (specific to 10 proteases). The comparative experimental results demonstrate that PROSPERous is the most accurate generic method for predicting eight protease-specific cleavage sites, while GPS-CCD and LabCaS outperformed other predictors for calpain-specific cleavage sites. Based on our review, we then outlined some potential ways to improve the prediction performance and ease the computational burden by applying ensemble learning, deep learning, positive unlabeled learning and parallel and distributed computing techniques. We anticipate that our study will serve as a practical and useful guide for interested readers to further advance next-generation bioinformatics tools for protease-specific cleavage site prediction.


Assuntos
Benchmarking , Biologia Computacional , Peptídeo Hidrolases/metabolismo , Pesquisa , Algoritmos , Aprendizado de Máquina , Especificidade por Substrato
8.
Nucleic Acids Res ; 46(D1): D624-D632, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29145643

RESUMO

The MEROPS database (http://www.ebi.ac.uk/merops/) is an integrated source of information about peptidases, their substrates and inhibitors. The hierarchical classification is: protein-species, family, clan, with an identifier at each level. The MEROPS website moved to the EMBL-EBI in 2017, requiring refactoring of the code-base and services provided. The interface to sequence searching has changed and the MEROPS protein sequence libraries can be searched at the EMBL-EBI with HMMER, FastA and BLASTP. Cross-references have been established between MEROPS and the PANTHER database at both the family and protein-species level, which will help to improve curation and coverage between the resources. Because of the increasing size of the MEROPS sequence collection, in future only sequences of characterized proteins, and from completely sequenced genomes of organisms of evolutionary, medical or commercial significance will be added. As an example, peptidase homologues in four proteomes from the Asgard superphylum of Archaea have been identified and compared to other archaean, bacterial and eukaryote proteomes. This has given insights into the origins and evolution of peptidase families, including an expansion in the number of proteasome components in Asgard archaeotes and as organisms increase in complexity. Novel structures for proteasome complexes in archaea are postulated.


Assuntos
Bases de Dados de Proteínas , Peptídeo Hidrolases/metabolismo , Archaea/enzimologia , Archaea/genética , Bactérias/enzimologia , Bactérias/genética , Eucariotos/enzimologia , Eucariotos/genética , Humanos , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Filogenia , Inibidores de Proteases/farmacologia , Alinhamento de Sequência , Especificidade por Substrato
9.
Methods Mol Biol ; 1594: 213-226, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28456986

RESUMO

This chapter describes how to retrieve data on lysosomal peptidases from the MEROPS database for proteolytic enzymes, their substrates and inhibitors ( http://merops.sanger.ac.uk ). Features described in this chapter include the summary page, pages for structure, interactions with inhibitors, substrates, literature and involvement in physiological pathways, and how to download data from the MEROPS FTP site. The lysosomal peptidase legumain is used as an example.


Assuntos
Bases de Dados de Proteínas , Peptídeo Hidrolases/análise , Proteínas/análise , Animais , Humanos , Inibidores de Proteases , Proteínas/antagonistas & inibidores , Especificidade por Substrato
10.
Nucleic Acids Res ; 45(D1): D190-D199, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899635

RESUMO

InterPro (http://www.ebi.ac.uk/interpro/) is a freely available database used to classify protein sequences into families and to predict the presence of important domains and sites. InterProScan is the underlying software that allows both protein and nucleic acid sequences to be searched against InterPro's predictive models, which are provided by its member databases. Here, we report recent developments with InterPro and its associated software, including the addition of two new databases (SFLD and CDD), and the functionality to include residue-level annotation and prediction of intrinsic disorder. These developments enrich the annotations provided by InterPro, increase the overall number of residues annotated and allow more specific functional inferences.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Domínios e Motivos de Interação entre Proteínas , Software , Humanos , Anotação de Sequência Molecular , Filogenia
11.
Biochimie ; 122: 5-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26455268

RESUMO

One peptidase can usually be distinguished from another biochemically by its action on proteins, peptides and synthetic substrates. Since 1996, the MEROPS database (http://merops.sanger.ac.uk) has accumulated a collection of cleavages in substrates that now amounts to 66,615 cleavages. The total number of peptidases for which at least one cleavage is known is 1700 out of a total of 2457 different peptidases. This paper describes how the cleavages are obtained from the scientific literature, how they are annotated and how cleavages in peptides and proteins are cross-referenced to entries in the UniProt protein sequence database. The specificity profiles of 556 peptidases are shown for which ten or more substrate cleavages are known. However, it has been proposed that at least 40 cleavages in disparate proteins are required for specificity analysis to be meaningful, and only 163 peptidases (6.6%) fulfil this criterion. Also described are the various displays shown on the website to aid with the understanding of peptidase specificity, which are derived from the substrate cleavage collection. These displays include a logo, distribution matrix, and tables to summarize which amino acids or groups of amino acids are acceptable (or not acceptable) in each substrate binding pocket. For each protein substrate, there is a display to show how it is processed and degraded. Also described are tools on the website to help with the assessment of the physiological relevance of cleavages in a substrate. These tools rely on the hypothesis that a cleavage site that is conserved in orthologues is likely to be physiologically relevant, and alignments of substrate protein sequences are made utilizing the UniRef50 database, in which in each entry sequences are 50% or more identical. Conservation in this case means substitutions are permitted only if the amino acid is known to occupy the same substrate binding pocket from at least one other substrate cleaved by the same peptidase.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Peptídeo Hidrolases/metabolismo , Proteoma/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Internet , Dados de Sequência Molecular , Peptídeo Hidrolases/classificação , Proteólise , Proteoma/genética , Proteômica , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
12.
Nucleic Acids Res ; 44(D1): D343-50, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26527717

RESUMO

The MEROPS database (http://merops.sanger.ac.uk) is an integrated source of information about peptidases, their substrates and inhibitors, which are of great relevance to biology, medicine and biotechnology. The hierarchical classification of the database is as follows: homologous sets of sequences are grouped into a protein species; protein species are grouped into a family; families are grouped into clans. There is a type example for each protein species (known as a 'holotype'), family and clan, and each protein species, family and clan has its own unique identifier. Pages to show the involvement of peptidases and peptidase inhibitors in biological pathways have been created. Each page shows the peptidases and peptidase inhibitors involved in the pathway, along with the known substrate cleavages and peptidase-inhibitor interactions, and a link to the KEGG database of biological pathways. Links have also been established with the IUPHAR Guide to Pharmacology. A new service has been set up to allow the submission of identified substrate cleavages so that conservation of the cleavage site can be assessed. This should help establish whether or not a cleavage site is physiologically relevant on the basis that such a cleavage site is likely to be conserved.


Assuntos
Bases de Dados de Proteínas , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Animais , Domínio Catalítico , Humanos , Camundongos , Peptídeo Hidrolases/química , Peptídeo Hidrolases/classificação , Inibidores de Proteases/classificação , Inibidores de Proteases/farmacologia
13.
Biol Direct ; 10: 66, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26527411

RESUMO

Homologues of calpain, often thought to be an essential, cytoplasmic, calcium-dependent cysteine endopeptidase found exclusively in eukaryotes, have been found in bacterial proteomes. The homologues lack calcium-binding sites, have differing domain architectures, and can be secreted or membrane-associated. Homologues are rare and occur in a minority of bacterial phyla and often in a minority of species in a genus. However, the differences in domain architecture argue against a recent, horizontal gene transfer from a eukaryote. From analysis of a phylogenetic tree and absence of homologues in archaea, calpains in eukaryotes may be derived from genes horizontally transferred from a bacterium.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Calpaína/genética , Eucariotos/enzimologia , Eucariotos/genética , Evolução Molecular , Proteínas de Bactérias/metabolismo , Calpaína/metabolismo , Eucariotos/metabolismo , Transferência Genética Horizontal , Filogenia
14.
Database (Oxford) ; 2015: bav063, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284514

RESUMO

During 11-12 August 2014, a Protein Bioinformatics and Community Resources Retreat was held at the Wellcome Trust Genome Campus in Hinxton, UK. This meeting brought together the principal investigators of several specialized protein resources (such as CAZy, TCDB and MEROPS) as well as those from protein databases from the large Bioinformatics centres (including UniProt and RefSeq). The retreat was divided into five sessions: (1) key challenges, (2) the databases represented, (3) best practices for maintenance and curation, (4) information flow to and from large data centers and (5) communication and funding. An important outcome of this meeting was the creation of a Specialist Protein Resource Network that we believe will improve coordination of the activities of its member resources. We invite further protein database resources to join the network and continue the dialogue.


Assuntos
Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Anotação de Sequência Molecular , Proteínas , Congressos como Assunto , Humanos , Proteínas/química , Proteínas/genética
15.
Elife ; 4: e06974, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26175406

RESUMO

The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga.


Assuntos
Alveolados/genética , DNA de Algas/química , DNA de Algas/genética , Evolução Molecular , Análise de Sequência de DNA , Perfilação da Expressão Gênica , Dados de Sequência Molecular
16.
Proteins ; 83(6): 1005-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25820941

RESUMO

As the volume of data relating to proteins increases, researchers rely more and more on the analysis of published data, thus increasing the importance of good access to these data that vary from the supplemental material of individual articles, all the way to major reference databases with professional staff and long-term funding. Specialist protein resources fill an important middle ground, providing interactive web interfaces to their databases for a focused topic or family of proteins, using specialized approaches that are not feasible in the major reference databases. Many are labors of love, run by a single lab with little or no dedicated funding and there are many challenges to building and maintaining them. This perspective arose from a meeting of several specialist protein resources and major reference databases held at the Wellcome Trust Genome Campus (Cambridge, UK) on August 11 and 12, 2014. During this meeting some common key challenges involved in creating and maintaining such resources were discussed, along with various approaches to address them. In laying out these challenges, we aim to inform users about how these issues impact our resources and illustrate ways in which our working together could enhance their accuracy, currency, and overall value.


Assuntos
Bases de Dados de Proteínas/normas , Anotação de Sequência Molecular , Proteínas , Curadoria de Dados
17.
Curr Protoc Bioinformatics ; 48: 1.25.1-1.25.33, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25501939

RESUMO

MEROPS is a database of proteolytic enzymes as well as their inhibitors and substrates. Proteolytic enzymes and protein inhibitors are organized into protein domain families. In turn, families are organized into clans. Each peptidase, inhibitor, family, and clan has associated annotation, a multiple sequence alignment, a phylogenetic tree, literature references, and links to other databases. Interactions between proteolytic enzymes and inhibitors and between proteolytic enzymes and substrates are also presented. The entries in MEROPS are available via the World Wide Web. This unit contains detailed information on how to access and utilize the information present in the MEROPS database. Details on running MEROPS both remotely and locally are presented.


Assuntos
Bases de Dados de Proteínas , Peptídeo Hidrolases/química , Inibidores de Proteases/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Peptídeo Hidrolases/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Interface Usuário-Computador
18.
Genome Res ; 24(10): 1676-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25015382

RESUMO

Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases. Understanding the biology of Eimeria parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of Eimeria that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, Eimeria is home to a family of chromoviruses. Analysis of Eimeria genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding.


Assuntos
Eimeria/genética , Genoma de Protozoário , Proteínas de Protozoários/genética , Animais , Linhagem Celular , Galinhas , Mapeamento Cromossômico , Coccidiose/parasitologia , Coccidiose/veterinária , Eimeria/classificação , Perfilação da Expressão Gênica , Filogenia , Doenças das Aves Domésticas/parasitologia , Proteoma , Sintenia
19.
BMC Bioinformatics ; 15: 75, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24646163

RESUMO

BACKGROUND: CA_C2195 from Clostridium acetobutylicum is a protein of unknown function. Sequence analysis predicted that part of the protein contained a metallopeptidase-related domain. There are over 200 homologs of similar size in large sequence databases such as UniProt, with pairwise sequence identities in the range of ~40-60%. CA_C2195 was chosen for crystal structure determination for structure-based function annotation of novel protein sequence space. RESULTS: The structure confirmed that CA_C2195 contained an N-terminal metallopeptidase-like domain. The structure revealed two extra domains: an α+ß domain inserted in the metallopeptidase-like domain and a C-terminal circularly permuted winged-helix-turn-helix domain. CONCLUSIONS: Based on our sequence and structural analyses using the crystal structure of CA_C2195 we provide a view into the possible functions of the protein. From contextual information from gene-neighborhood analysis, we propose that rather than being a peptidase, CA_C2195 and its homologs might play a role in biosynthesis of a modified cell-surface carbohydrate in conjunction with several sugar-modification enzymes. These results provide the groundwork for the experimental verification of the function.


Assuntos
Proteínas de Bactérias/química , Clostridium acetobutylicum/enzimologia , Metaloproteases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridium acetobutylicum/genética , Cristalografia por Raios X , Metaloproteases/genética , Metaloproteases/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína
20.
BMC Bioinformatics ; 15: 1, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24383880

RESUMO

BACKGROUND: The Acel_2062 protein from Acidothermus cellulolyticus is a protein of unknown function. Initial sequence analysis predicted that it was a metallopeptidase from the presence of a motif conserved amongst the Asp-zincins, which are peptidases that contain a single, catalytic zinc ion ligated by the histidines and aspartic acid within the motif (HEXXHXXGXXD). The Acel_2062 protein was chosen by the Joint Center for Structural Genomics for crystal structure determination to explore novel protein sequence space and structure-based function annotation. RESULTS: The crystal structure confirmed that the Acel_2062 protein consisted of a single, zincin-like metallopeptidase-like domain. The Met-turn, a structural feature thought to be important for a Met-zincin because it stabilizes the active site, is absent, and its stabilizing role may have been conferred to the C-terminal Tyr113. In our crystallographic model there are two molecules in the asymmetric unit and from size-exclusion chromatography, the protein dimerizes in solution. A water molecule is present in the putative zinc-binding site in one monomer, which is replaced by one of two observed conformations of His95 in the other. CONCLUSIONS: The Acel_2062 protein is structurally related to the zincins. It contains the minimum structural features of a member of this protein superfamily, and can be described as a "mini- zincin". There is a striking parallel with the structure of a mini-Glu-zincin, which represents the minimum structure of a Glu-zincin (a metallopeptidase in which the third zinc ligand is a glutamic acid). Rather than being an ancestral state, phylogenetic analysis suggests that the mini-zincins are derived from larger proteins.


Assuntos
Proteínas de Bactérias/química , Metaloproteases/química , Zinco/química , Actinomycetales/química , Actinomycetales/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Dimerização , Metaloproteases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Subunidades Proteicas , Alinhamento de Sequência , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA