Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 34(6): 2111-9, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24501352

RESUMO

Homeostatic plasticity functions within the nervous system to maintain normal neural functions, such as neurotransmission, within predefined optimal ranges. The defined output of these neuronal processes is referred to as the set point, which is the value that the homeostatic system defends against fluctuations. Currently, it is unknown how stable homeostatic set points are within the nervous system. In the present study we used the CM9 neuromuscular junctions (NMJs) in the adult Drosophila to investigate the stability of the set point of synaptic homeostasis across the lifespan of the fly. At the fly NMJ, it is believed that the depolarization of the muscle by neurotransmitter during an action potential, represented by the EPSP, is a homeostatic set point that is precisely maintained via changes in synaptic vesicle release. We find that the amplitude of the EPSP abruptly increases during middle age and that this enhanced EPSP is maintained into late life, consistent with an age-dependent change to the homeostatic set point of the synapse during middle age. In support of this, comparison of the homeostatic response at the young versus the old synapse shows that the magnitude of the homeostatic response at the older synapse is significantly larger than the response at the young NMJ, appropriate for a synapse at which the set point has been increased. Our data demonstrate that the amplitude of the EPSP at the Drosophila NMJ increases during aging and that the homeostatic signaling system adjusts its response to accommodate the new set point.


Assuntos
Envelhecimento/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Homeostase/fisiologia , Sinapses/fisiologia , Animais , Drosophila , Feminino , Junção Neuromuscular/fisiologia , Plasticidade Neuronal/fisiologia
2.
Development ; 139(19): 3653-64, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22949619

RESUMO

Mutations that disrupt function of the human inwardly rectifying potassium channel KIR2.1 are associated with the craniofacial and digital defects of Andersen-Tawil Syndrome, but the contribution of Kir channels to development is undefined. Deletion of mouse Kir2.1 also causes cleft palate and digital defects. These defects are strikingly similar to phenotypes that result from disrupted TGFß/BMP signaling. We use Drosophila melanogaster to show that a Kir2.1 homolog, Irk2, affects development by disrupting BMP signaling. Phenotypes of irk2 deficient lines, a mutant irk2 allele, irk2 siRNA and expression of a dominant-negative Irk2 subunit (Irk2DN) all demonstrate that Irk2 function is necessary for development of the adult wing. Compromised Irk2 function causes wing-patterning defects similar to those found when signaling through a Drosophila BMP homolog, Decapentaplegic (Dpp), is disrupted. To determine whether Irk2 plays a role in the Dpp pathway, we generated flies in which both Irk2 and Dpp functions are reduced. Irk2DN phenotypes are enhanced by decreased Dpp signaling. In wild-type flies, Dpp signaling can be detected in stripes along the anterior/posterior boundary of the larval imaginal wing disc. Reducing function of Irk2 with siRNA, an irk2 deletion, or expression of Irk2DN reduces the Dpp signal in the wing disc. As Irk channels contribute to Dpp signaling in flies, a similar role for Kir2.1 in BMP signaling may explain the morphological defects of Andersen-Tawil Syndrome and the Kir2.1 knockout mouse.


Assuntos
Padronização Corporal/genética , Drosophila/embriologia , Drosophila/genética , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/efeitos dos fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião de Mamíferos , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Camundongos Knockout , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Asas de Animais/anormalidades , Asas de Animais/embriologia , Asas de Animais/metabolismo
3.
Aging Cell ; 11(3): 418-27, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22268717

RESUMO

Synaptic dysfunction is considered the primary substrate for the functional declines observed within the nervous system during age-related neurodegenerative disease. Dietary restriction (DR), which extends lifespan in numerous species, has been shown to have beneficial effects on many neurodegenerative disease models. Existing data sets suggest that the effects of DR during disease include the amelioration of synaptic dysfunction but evidence of the beneficial effects of diet on the synapse is lacking. Dynactin mutant flies have significant increases in mortality rates and exhibit progressive loss of motor function. Using a novel fly motor disease model, we demonstrate that mutant flies raised on a low calorie diet have enhanced motor function and improved survival compared to flies on a high calorie diet. Neurodegeneration in this model is characterized by an early impairment of neurotransmission that precedes the deterioration of neuromuscular junction (NMJ) morphology. In mutant flies, low calorie diet increases neurotransmission, but has little effect on morphology, supporting the hypothesis that enhanced neurotransmission contributes to the effects of diet on motor function. Importantly, the effects of diet on the synapse are not because of the reduction of mutant pathologies, but by the increased release of synaptic vesicles during activity. The generality of this effect is demonstrated by the observation that diet can also increase synaptic vesicle release at wild-type NMJs. These studies reveal a novel presynaptic mechanism of diet that may contribute to the improved vigor observed in mutant flies raised on low calorie diet.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Junção Neuromuscular/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Dieta , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Complexo Dinactina , Proteínas Associadas aos Microtúbulos/genética , Análise de Sobrevida , Vesículas Sinápticas/genética
4.
Hum Mol Genet ; 20(12): 2322-32, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21487022

RESUMO

Paroxysmal non-kinesigenic dyskinesia (PNKD) is a rare autosomal dominant movement disorder triggered by stress, fatigue or consumption of either alcohol or caffeine. Attacks last 1-4 h and consist of dramatic dystonia and choreoathetosis in the limbs, trunk and face. The disease is associated with single amino acid changes (A7V or A9V) in PNKD, a protein of unknown function. Here we studied the stability, cellular localization and enzymatic activity of the PNKD protein in cultured cells and transgenic animals. The N-terminus of the wild-type (WT) long PNKD isoform (PNKD-L) undergoes a cleavage event in vitro, resistance to which is conferred by disease-associated mutations. Mutant PNKD-L protein is degraded faster than the WT protein. These results suggest that the disease mutations underlying PNKD may disrupt protein processing in vivo, a hypothesis supported by our observation of decreased cortical Pnkd-L levels in mutant transgenic mice. Pnkd is homologous to a superfamily of enzymes with conserved ß-lactamase domains. It shares highest homology with glyoxalase II but does not catalyze the same reaction. Lower glutathione levels were found in cortex lysates from Pnkd knockout mice versus WT littermates. Taken together, our results suggest an important role for the Pnkd protein in maintaining cellular redox status.


Assuntos
Coreia/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Animais , Western Blotting , Células Cultivadas , Drosophila , Imunofluorescência , Imunoprecipitação , Luciferases , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , beta-Lactamases/genética
5.
Dev Neurobiol ; 71(7): 608-18, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21500363

RESUMO

Axon guidance is influenced by the presence of heparan sulfate (HS) proteoglycans (HSPGs) on the surface of axons and growth cones (Hu, [2001]: Nat Neurosci 4:695-701; Irie et al. [2002]: Development 129:61-70; Inatani et al. [2003]: Science 302:1044-1046; Johnson et al. [2004]: Curr Biol 14:499-504; Steigemann et al. [2004]: Curr Biol 14:225-230). Multiple HSPGs, including Syndecans, Glypicans and Perlecans, carry the same carbohydrate polymer backbones, raising the question of how these molecules display functional specificity during nervous system development. Here we use the Drosophila central nervous system (CNS) as a model to compare the impact of eliminating Syndecan (Sdc) and/or the Glypican Dally-like (Dlp). We show that Dlp and Sdc share a role in promoting accurate patterns of axon fasciculation in the lateral longitudinal neuropil; however, unlike mutations in sdc, which disrupt the ability of the secreted repellent Slit to prevent inappropriate passage of axons across the midline, mutations in dlp show neither midline defects nor genetic interactions with Slit and its Roundabout (Robo) receptors at the midline. Dlp mutants do show genetic interactions with Slit and Robo in lateral fascicle formation. In addition, simultaneous loss of Dlp and Sdc demonstrates an important role for Dlp in midline repulsion, reminiscent of the functional overlap between Robo receptors. A comparison of HSPG distribution reveals a pattern that leaves midline proximal axons with relatively little Dlp. Finally, the loss of Dlp alters Slit distribution distal but not proximal to the midline, suggesting that distinct yet overlapping pattern of HSPG expression provides a spatial system that regulates axon guidance decisions.


Assuntos
Axônios/metabolismo , Sistema Nervoso Central/embriologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Neurogênese/fisiologia , Proteoglicanas/fisiologia , Sindecanas/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Imuno-Histoquímica , Microscopia Confocal , Proteínas do Tecido Nervoso/fisiologia , Vias Neurais/embriologia , Vias Neurais/metabolismo , Receptores Imunológicos/fisiologia , Especificidade por Substrato , Proteínas Roundabout
6.
J Neurosci ; 29(26): 8539-50, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19571145

RESUMO

Heparan sulfate proteoglycans (HSPGs) are concentrated at neuromuscular synapses in many species, including Drosophila. We have established the physiological and patterning functions of HSPGs at the Drosophila neuromuscular junction by using mutations that block heparan sulfate synthesis or sulfation to compromise HSPG function. The mutant animals showed defects in synaptic physiology and morphology suggesting that HSPGs function both presynaptically and postsynaptically; these defects could be rescued by appropriate transgene expression. Of particular interest were selective disruptions of mitochondrial localization, abnormal distributions of Golgi and endoplasmic reticulum markers in the muscle, and a markedly increased level of stimulus-dependent endocytosis in the motoneuron. Our data support the emerging view that HSPG functions are not limited to the cell surface and matrix environments, but also affect a diverse set of cellular processes including membrane trafficking and organelle distributions.


Assuntos
Movimento Celular/fisiologia , Heparitina Sulfato/biossíntese , Mitocôndrias/metabolismo , Junção Neuromuscular/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Comunicação Celular/fisiologia , Movimento Celular/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endocitose/genética , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/genética , Proteoglicanas de Heparan Sulfato/biossíntese , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/genética , Peroxidase do Rábano Silvestre/metabolismo , Larva , Locomoção/fisiologia , Microscopia Eletrônica de Transmissão/métodos , Mitocôndrias/ultraestrutura , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Mutação , Junção Neuromuscular/citologia , Junção Neuromuscular/ultraestrutura
7.
Curr Biol ; 15(9): 833-8, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-15886101

RESUMO

Heparan sulfate proteoglycans (HSPGs), a class of glycosaminoglycan-modified proteins, control diverse patterning events via their regulation of growth-factor signaling and morphogen distribution. In C. elegans, zebrafish, and the mouse, heparan sulfate (HS) biosynthesis is required for normal axon guidance, and mutations affecting Syndecan (Sdc), a transmembrane HSPG, disrupt axon guidance in Drosophila embryos. Glypicans, a family of glycosylphosphatidylinositol (GPI)-linked HSPGs, are expressed on axons and growth cones in vertebrates, but their role in axon guidance has not been determined. We demonstrate here that the Drosophila glypican Dally-like protein (Dlp) is required for proper axon guidance and visual-system function. Mosaic studies revealed that Dlp is necessary in both the retina and the brain for different aspects of visual-system assembly. Sdc mutants also showed axon guidance and visual-system defects, some that overlap with dlp and others that are unique. dlp+ transgenes were able to rescue some sdc visual-system phenotypes, but sdc+ transgenes were ineffective in rescuing dlp abnormalities. Together, these findings suggest that in some contexts HS chains provide the biologically critical component, whereas in others the structure of the protein core is also essential.


Assuntos
Axônios/metabolismo , Movimento Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Glicoproteínas de Membrana/metabolismo , Morfogênese , Proteoglicanas/metabolismo , Vias Visuais/fisiologia , Animais , Encéfalo/metabolismo , Drosophila/metabolismo , Eletrofisiologia , Regulação da Expressão Gênica no Desenvolvimento , Heparitina Sulfato/metabolismo , Imuno-Histoquímica , Microscopia Confocal , Microscopia Eletrônica de Varredura , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestrutura , Retina/metabolismo , Sindecanas , Vias Visuais/metabolismo
8.
J Neurobiol ; 55(2): 134-50, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12672013

RESUMO

Transforming growth factor-betas (TGF-beta) comprise a superfamily of secreted proteins with diverse functions in patterning and cell division control. TGF-beta signaling has been implicated in synapse assembly and plasticity in both vertebrate and invertebrate systems. Recently, wishful thinking, a Drosophila gene that encodes a protein related to BMP type II receptors, has been shown to be required for the normal function and development of the neuromuscular junction (NMJ). These findings suggest that a TGF-beta-related ligand activates a signaling cascade involving type I and II receptors and the Smad family of transcription factors to orchestrate the assembly of the NMJ. Here we demonstrate that the TGF-beta type I receptor Saxophone and the downstream transcription factor Mothers against dpp (Mad) are essential for the normal structural and functional development of the Drosophila NMJ, a synapse that displays activity-dependent plasticity.


Assuntos
Receptores de Ativinas Tipo I/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Junção Neuromuscular/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Sinapses/metabolismo , Fatores de Transcrição/fisiologia , Receptores de Ativinas Tipo I/deficiência , Receptores de Ativinas Tipo I/genética , Animais , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Drosophila , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Mutação/fisiologia , Junção Neuromuscular/embriologia , Junção Neuromuscular/genética , Plasticidade Neuronal/fisiologia , Especificidade de Órgãos/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Serina-Treonina Quinases , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/deficiência , Receptores de Fatores de Crescimento Transformadores beta/genética , Sinapses/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA