Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(1): e0433522, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38014988

RESUMO

IMPORTANCE: RNA metabolism is important as RNA acts as a link between genomic information and functional biomolecules, thereby playing a critical role in cellular response to environment. We investigated the role of DEAD-box RNA helicases in low-temperature adapted growth of P. syringae, as this group of enzymes play an essential role in modulation of RNA secondary structures. This is the first report on the assessment of all major DEAD-box RNA helicases in any Antarctic bacterium. Of the five RNA helicases, three (srmB, csdA, and dbpA) are important for the growth of the Antarctic P. syringae at low temperature. However, the requisite role of dbpA and the indispensable requirement of csdA for low-temperature adapted growth are a novel finding of this study. Growth analysis of combinatorial deletion strains was performed to understand the functional interaction among helicase genes. Similarly, genetic complementation of RNA helicase mutants was conducted for identification of gene redundancy in P. syringae.


Assuntos
Pseudomonas syringae , RNA , Pseudomonas syringae/genética , Temperatura , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regiões Antárticas
2.
J Genet Eng Biotechnol ; 21(1): 101, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843651

RESUMO

BACKGROUND: In Antarctic P. syringae RNase R play an essential role in the processing of 16S and 5S rRNA, thereby playing an important role in cold-adapted growth of the bacterium. This study is focused on deciphering the in vivo functional activity of mesophilic exoribonuclease R and its catalytic domain (RNB) in an evolutionary distant psychrophilic bacterium Pseudomonas syringae Lz4W. RESULTS: Our results confirm that E. coli RNase R complemented the physiological functions of the psychrophilic bacterium P. syringae RNase R and rescued the cold-sensitive phenotype of Pseudomonas syringae ∆rnr mutant. More importantly, the catalytic domain (RNB) of the E. coli RNase R is also capable of alleviating the cold-sensitive growth defects of ∆rnr mutant as seen with the catalytic domain (RNB) of the P. syringae enzyme. The Catalytic domain of E. coli RNase R was less efficient than the Catalytic domain of P. syringae RNase R in rescuing the cold-sensitive growth of ∆rnr mutant at 4°C, as the ∆rnr expressing the RNBEc (catalytic domain of E. coli RNase R) displayed longer lag phase than the RNBPs (Catalytic domain of P. syringae RNase R) complemented ∆rnr mutant at 4°C. Altogether it appears that the E. coli RNase R and P. syringae RNase R are functionally exchangeable for the growth requirements of P. syringae at low temperature (4°C). Our results also confirm that in P. syringae the requirement of RNase R for supporting the growth at 4°C is independent of the degradosomal complex. CONCLUSION: E. coli RNase R (RNase REc) rescues the cold-sensitive phenotype of the P. syringae Δrnr mutant. Similarly, the catalytic domain of E. coli RNase R (RNBEc) is also capable of supporting the growth of Δrnr mutant at low temperatures. These findings have a vast scope in the design and development of low-temperature-based expression systems.

3.
Infect Genet Evol ; 106: 105382, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36336276

RESUMO

DEAD box RNA helicases are involved in important cellular processes like RNA metabolism (Processing and Degradation), ribosome biogenesis and translation. Besides being crucial to the formation of cold adapted degradosomes, RNA helicases have been implicated in structural rearrangement of RNA, implying a role in alleviation of RNA secondary structure stabilization at low temperature. This study depicts the results of experiments on protective role played by DEAD box RNA helicases against nucleic acid damaging agents. RNA helicase mutants ΔrhlE, ΔsrmB, ΔcsdA, ΔdbpA and ΔrhlB cells were exposed to various DNA damaging agents (UV, Paraquat, Mitomycin C, Hydroxyurea and Hydrogen peroxide) and assessed for sensitivity to them. Our results illustrate that ∆csdA displayed sensitivity to paraquat (that causes oxidative damage) and UV radiation induced DNA damage. On the other hand, ∆srmB displays sensitivity to hydroxyurea that causes damage to the replication forks (RFs) by inhibiting ribonucleotide reductase and depleting the dNTP pool of cells. However, all five RNA helicase mutants were resistant to H2O2 mediated oxidative stress and mitomycin C induced DNA cross-links.


Assuntos
Peróxido de Hidrogênio , Pseudomonas syringae , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Peróxido de Hidrogênio/farmacologia , RNA Helicases/genética , Estresse Oxidativo , RNA/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
4.
Front Genet ; 13: 825269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360867

RESUMO

Exploring the molecular mechanisms behind bacterial adaptation to extreme temperatures has potential biotechnological applications. In the present study, Pseudomonas sp. Lz4W, a Gram-negative psychrophilic bacterium adapted to survive in Antarctica, was selected to decipher the molecular mechanism underlying the cold adaptation. Proteome analysis of the isolates grown at 4°C was performed to identify the proteins and pathways that are responsible for the adaptation. However, many proteins from the expressed proteome were found to be hypothetical proteins (HPs), whose function is unknown. Investigating the functional roles of these proteins may provide additional information in the biological understanding of the bacterial cold adaptation. Thus, our study aimed to assign functions to these HPs and understand their role at the molecular level. We used a structured insilico workflow combining different bioinformatics tools and databases for functional annotation. Pseudomonas sp. Lz4W genome (CP017432, version 1) contains 4493 genes and 4412 coding sequences (CDS), of which 743 CDS were annotated as HPs. Of these, from the proteome analysis, 61 HPs were found to be expressed consistently at the protein level. The amino acid sequences of these 61 HPs were submitted to our workflow and we could successfully assign a function to 18 HPs. Most of these proteins were predicted to be involved in biological mechanisms of cold adaptations such as peptidoglycan metabolism, cell wall organization, ATP hydrolysis, outer membrane fluidity, catalysis, and others. This study provided a better understanding of the functional significance of HPs in cold adaptation of Pseudomonas sp. Lz4W. Our approach emphasizes the importance of addressing the "hypothetical protein problem" for a thorough understanding of mechanisms at the cellular level, as well as, provided the assessment of integrating proteomics methods with various annotation and curation approaches to characterize hypothetical or uncharacterized protein data. The MS proteomics data generated from this study has been deposited to the ProteomeXchange through PRIDE with the dataset identifier-PXD029741.

5.
J Biol Chem ; 282(22): 16267-77, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17405875

RESUMO

The (3'-->5') exoribonuclease RNase R interacts with the endoribonuclease RNase E in the degradosome of the cold-adapted bacterium Pseudomonas syringae Lz4W. We now present evidence that the RNase R is essential for growth of the organism at low temperature (4 degrees C). Mutants of P. syringae with inactivated rnr gene (encoding RNase R) are cold-sensitive and die upon incubation at 4 degrees C, a phenotype that can be complemented by expressing RNase R in trans. Overexpressing polyribonucleotide phosphorylase in the rnr mutant does not rescue the cold sensitivity. This is different from the situation in Escherichia coli, where rnr mutants show normal growth, but pnp (encoding polyribonucleotide phosphorylase) and rnr double mutants are nonviable. Interestingly, RNase R is not cold-inducible in P. syringae. Remarkably, however, rnr mutants of P. syringae at low temperature (4 degrees C) accumulate 16 and 5 S ribosomal RNA (rRNA) that contain untrimmed extra ribonucleotide residues at the 3' ends. This suggests a novel role for RNase R in the rRNA 3' end processing. Unprocessed 16 S rRNA accumulates in the polysome population, which correlates with the inefficient protein synthesis ability of mutant. An additional role of RNase R in the turnover of transfer-messenger RNA was identified from our observation that the rnr mutant accumulates transfer-messenger RNA fragments in the bacterium at 4 degrees C. Taken together our results establish that the processive RNase R is crucial for RNA metabolism at low temperature in the cold-adapted Antarctic P. syringae.


Assuntos
Proteínas de Bactérias/metabolismo , Exorribonucleases/metabolismo , Pseudomonas syringae/enzimologia , Processamento Pós-Transcricional do RNA/fisiologia , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 5S/metabolismo , Adaptação Biológica/fisiologia , Proteínas de Bactérias/genética , Temperatura Baixa , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exorribonucleases/genética , Teste de Complementação Genética , Mutação , Fenótipo , Polirribossomos/genética , Polirribossomos/metabolismo , Biossíntese de Proteínas/genética , Pseudomonas syringae/genética , Pseudomonas syringae/crescimento & desenvolvimento , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 5S/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo
6.
J Biol Chem ; 280(15): 14572-8, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15705581

RESUMO

Endoribonuclease E, a key enzyme involved in RNA decay and processing in bacteria, organizes a protein complex called degradosome. In Escherichia coli, Rhodobacter capsulatus, and Streptomyces coelicolor, RNase E interacts with the phosphate-dependent exoribonuclease polynucleotide phosphorylase, DEAD-box helicase(s), and additional factors in an RNA-degrading complex. To characterize the degradosome of the psychrotrophic bacterium Pseudomonas syringae Lz4W, RNase E was enriched by cation exchange chromatography and fractionation in a glycerol density gradient. Most surprisingly, the hydrolytic exoribonuclease RNase R was found to co-purify with RNase E. Co-immunoprecipitation and Ni(2+)-affinity pull-down experiments confirmed the specific interaction between RNase R and RNase E. Additionally, the DEAD-box helicase RhlE was identified as part of this protein complex. Fractions comprising the three proteins showed RNase E and RNase R activity and efficiently degraded a synthetic stem-loop containing RNA in the presence of ATP. The unexpected association of RNase R with RNase E and RhlE in an RNA-degrading complex indicates that the cold-adapted P. syringae has a degradosome of novel structure. The identification of RNase R instead of polynucleotide phosphorylase in this complex underlines the importance of the interaction between endo- and exoribonucleases for the bacterial RNA metabolism. The physical association of RNase E with an exoribonuclease and an RNA helicase apparently is a common theme in the composition of bacterial RNA-degrading complexes.


Assuntos
Endorribonucleases/metabolismo , Endorribonucleases/fisiologia , Exorribonucleases/metabolismo , Pseudomonas syringae/enzimologia , RNA Helicases/metabolismo , Trifosfato de Adenosina/química , Western Blotting , Centrifugação com Gradiente de Concentração , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Endorribonucleases/química , Glicerol/farmacologia , Imunoprecipitação , Ligação Proteica , RNA/química , RNA/metabolismo , Proteínas Recombinantes/química , Ribonucleases/química , Fatores de Tempo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA