Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38695836

RESUMO

Background: Early detection and monitoring of SARS-CoV-2 infections in animal populations living in close proximity to humans is crucial for preventing reverse zoonosis of new viral strains. Evidence accumulated has revealed widespread SARS-CoV-2 infection among white-tailed deer (WTD), (Odocoileus virginianus) populations in the United States except in the southeast region. Therefore, the objective was to conduct surveillance for evidence of SARS-CoV-2 infection among WTD in Mississippi. Materials and Methods: Blood, kidney tissues, and nasal swab samples were collected in 17 counties from hunter-harvested deer during 2021-2022 and 2022-2023.Samples of kidney tissue were collected to evaluate for detecting antibody as a possible alternative to blood that is not always available from dead WTD. Nasal swab samples were tested for SARS-CoV-2 viral RNA by a RT-PCR assay. Sera and kidney tissue samples were tested for SARS-CoV-2 antibody by an enzyme-linked immunoassay (ELISA) and sera by a plaque reduction neutralization test (PRNT80). Results: The results of testing sera and kidney homogenate samples provided the first evidence of SARS-CoV-2 infection among WTD in Mississippi. The infection rate during 2021-2022 was 67% (10/15) based on the detection of neutralizing antibody by the PRNT80 and 26%(16/62) based on the testing of kidney tissue homogenates by an ELISA, and viral RNA was detected in 25% (3/12) of nasal swab samples. In 2022 to 2023, neutralizing antibody was detected in 62% (28/45) of WTD serum samples. In contrast, antibodies were not detected in 220 kidney homogenates by an ELISA nor was viral RNA detected in 220 nasal swab samples. Evidence of WTD activity was common in urban areas during the survey. Conclusion: Overall, the findings documented the first SARS-CoV-2 infection among WTD in Mississippi and showed that WTD commonly inhabited urban areas as a possible source of acquiring infection from humans infected with this virus.

2.
J Nat Prod ; 86(6): 1463-1475, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37306476

RESUMO

In this work, we isolated two new sulfated glycans from the body wall of the sea cucumber Thyonella gemmata: one fucosylated chondroitin sulfate (TgFucCS) (17.5 ± 3.5% kDa) and one sulfated fucan (TgSF) (383.3 ± 2.1% kDa). NMR results showed the TgFucCS backbone composed of [→3)-ß-N-acetylgalactosamine-(1→4)-ß-glucuronic acid-(1→] with 70% 4-sulfated and 30% 4,6-disulfated GalNAc units and one-third of the GlcA units decorated at the C3 position with branching α-fucose (Fuc) units either 4-sulfated (65%) or 2,4-disulfated (35%) and the TgSF structure composed of a tetrasaccharide repeating unit of [→3)-α-Fuc2,4S-(1→2)-α-Fuc4S-(1→3)-α-Fuc2S-(1→3)-α-Fuc2S-(1→]n. Inhibitory properties of TgFucCS and TgSF were investigated using SARS-CoV-2 pseudovirus coated with S-proteins of the wild-type (Wuhan-Hu-1) or the delta (B.1.617.2) strains and in four different anticoagulant assays, comparatively with unfractionated heparin. Molecular binding to coagulation (co)-factors and S-proteins was investigated by competitive surface plasmon resonance spectroscopy. Among the two sulfated glycans tested, TgSF showed significant anti-SARS-CoV-2 activity against both strains together with low anticoagulant properties, indicating a good candidate for future studies in drug development.


Assuntos
COVID-19 , Pepinos-do-Mar , Animais , Anticoagulantes/farmacologia , Pepinos-do-Mar/química , Sulfatos/química , Heparina , SARS-CoV-2 , Polissacarídeos/química
3.
Viruses ; 15(4)2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37112839

RESUMO

Many viruses attach to host cells by first interacting with cell surface proteoglycans containing heparan sulfate (HS) glycosaminoglycan chains and then by engaging with specific receptor, resulting in virus entry. In this project, HS-virus interactions were targeted by a new fucosylated chondroitin sulfate from the sea cucumber Pentacta pygmaea (PpFucCS) in order to block human cytomegalovirus (HCMV) entry into cells. Human foreskin fibroblasts were infected with HCMV in the presence of PpFucCS and its low molecular weight (LMW) fractions and the virus yield at five days post-infection was assessed. The virus attachment and entry into the cells were visualized by labeling the purified virus particles with a self-quenching fluorophore octadecyl rhodamine B (R18). The native PpFucCS exhibited potent inhibitory activity against HCMV specifically blocking virus entry into the cell and the inhibitory activities of the LMW PpFucCS derivatives were proportional to their chain lengths. PpFucCS and the derived oligosaccharides did not exhibit any significant cytotoxicity; moreover, they protected the infected cells from virus-induced lytic cell death. In conclusion, PpFucCS inhibits the entry of HCMV into cells and the high MW of this carbohydrate is a key structural element to achieve the maximal anti-viral effect. This new marine sulfated glycan can be developed into a potential prophylactic and therapeutic antiviral agent against HCMV infection.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Citomegalovirus/fisiologia , Peso Molecular , Replicação Viral , Heparitina Sulfato/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA