RESUMO
The rising incidence of hepatocellular carcinoma (HCC) is a global problem. Several approved treatments, including immune therapy and multi-tyrosine kinase inhibitors, are used for treatment, although the results are not optimum. There is an unmet need to develop highly effective chemotherapies for HCC. Targeting multiple pathways to attack cancer cells is beneficial. Cabozantinib is an orally available bioactive multikinase inhibitor and has a modest effect on HCC treatment. Silmitasertib is an orally bioavailable, potent CK2 inhibitor with a direct role in DNA damage repair and is in clinical trials for other cancers. In this study, we planned to repurpose these existing drugs on HCC treatment. We observed a stronger antiproliferative effect of these two combined drugs on HCC cells generated from different etiologies as compared to the single treatment. Global RNA-seq analyses revealed a decrease in the expression of G2/M cell cycle transition genes in HCC cells following combination treatment, suggesting G2 phase cell arrest. We observed G2/M cell cycle phase arrest in HCC cells upon combination treatment compared to the single-treated or vehicle-treated control cells. The downregulation of CCNA2 and CDC25C following combination therapy further supported the observation. Subsequent analyses demonstrated that combination treatment inhibited 70 kDa ribosomal protein S6 kinase (p70S6K) phosphorylation, and increased Bim expression. Apoptosis of HCC cells were accompanied by increased poly (ADP-ribose) polymerase cleavage and caspase-9 activation. Next, we observed that a combination therapy significantly delayed the progression of HCC xenograft growth as compared to vehicle control. Together, our results suggested combining cabozantinib and silmitasertib would be a promising treatment option for HCC.
RESUMO
There is a critical need to understand the disease processes and identify improved therapeutic strategies for hepatocellular carcinoma (HCC). The long noncoding RNAs (lncRNAs) display diverse effects on biological regulations. The aim of this study was to identify a lncRNA as a potential biomarker of HCC and investigate the mechanisms by which the lncRNA promotes HCC progression using human cell lines and in vivo. Using RNA-Seq analysis, we found that lncRNA FIRRE was significantly upregulated in hepatitis C virus (HCV) associated liver tissue and identified that lncRNA FIRRE is significantly upregulated in HCV-associated HCC compared to adjacent non-tumor liver tissue. Further, we observed that FIRRE is significantly upregulated in HCC specimens with other etiologies, suggesting this lncRNA has the potential to serve as an additional biomarker for HCC. Overexpression of FIRRE in hepatocytes induced cell proliferation, colony formation, and xenograft tumor formation as compared to vector-transfected control cells. Using RNA pull-down proteomics, we identified HuR as an interacting partner of FIRRE. We further showed that the FIRRE-HuR axis regulates cyclin D1 expression. Our mechanistic investigation uncovered that FIRRE is associated with an RNA-binding protein HuR for enhancing hepatocyte growth. Together, these findings provide molecular insights into the role of FIRRE in HCC progression.
Assuntos
Carcinoma Hepatocelular , Ciclina D1 , Proteína Semelhante a ELAV 1 , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , RNA Longo não Codificante , Transdução de Sinais , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/metabolismo , Ciclina D1/genética , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Camundongos Nus , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Hepatite C/complicações , Regulação para Cima , Biomarcadores TumoraisRESUMO
Head and neck cancer (HNC) is prevalent worldwide, and treatment options are limited. Momordicine-I (M-I), a natural component from bitter melon, shows antitumor activity against these cancers, but its mechanism of action, especially in the tumor microenvironment (TME), remains unclear. In this study, we establish that M-I reduces HNC tumor growth in two different immunocompetent mouse models using MOC2 and SCC VII cells. We demonstrate that the anticancer activity results from modulating several molecules in the monocyte/macrophage clusters in CD45+ populations in MOC2 tumors by single-cell RNA sequencing. Tumor-associated macrophages (TAM) often pose a barrier to antitumor effects, but following M-I treatment, we observe a significant reduction in the expression of Sfln4, a myeloid cell differentiation factor, and Cxcl3, a neutrophil chemoattractant, in the monocyte/macrophage populations. We further find that the macrophages must be in close contact with the tumor cells to inhibit Sfln4 and Cxcl3, suggesting that these TAMs are impacted by M-I treatment. Coculturing macrophages with tumor cells shows inhibition of Agr1 expression following M-I treatment, which is indicative of switching from M2 to M1 phenotype. Furthermore, the total B-cell population in M-I-treated tumors is significantly lower, whereas spleen cells also show similar results when cocultured with MOC2 cells. M-I treatment also inhibits PD1, PD-L1, and FoxP3 expression in tumors. Collectively, these results uncover the potential mechanism of M-I by modulating immune cells, and this new insight can help to develop M-I as a promising candidate to treat HNCs, either alone or as adjuvant therapy.
Assuntos
Linfócitos B , Neoplasias de Cabeça e Pescoço , Animais , Camundongos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/imunologia , Humanos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacosRESUMO
Overexpression of Lin28 is detected in various cancers with involvement in the self-renewal process and cancer stem cell generation. In the present study, we evaluated how the Lin28 axis plays an immune-protective role for tumor-initiating cancer cells in hepatocellular carcinoma (HCC). Our result using HCC patient samples showed a positive correlation between indoleamine 2,3-dioxygenase-1 (IDO1), a kynurenine-producing enzyme with effects on tumor immune escape, and Lin28B. Using in silico prediction, we identified a Sox2/Oct4 transcriptional motif acting as an enhancer for IDO1. Knockdown of Lin28B reduced Sox2/Oct4 and downregulated IDO1 in tumor-initiating hepatic cancer cells. We further observed that inhibition of Lin28 by a small-molecule inhibitor (C1632) suppressed IDO1 expression. Suppression of IDO1 resulted in a decline in kynurenine production from tumor-initiating cells. Inhibition of the Lin28 axis also impaired PD-L1 expression in HCC cells. Consequently, modulating Lin28B enhanced in vitro cytotoxicity of glypican-3 (GPC3)-chimeric antigen receptor (CAR) T and NK cells. Next, we observed that GPC3-CAR T cell treatment together with C1632 in a HCC xenograft mouse model led to enhanced anti-tumor activity. In conclusion, our results suggest that inhibition of Lin28B reduces IDO1 and PD-L1 expression and enhances immunotherapeutic potential of GPC3-CART cells against HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Antígeno B7-H1/metabolismo , Glipicanas/genética , Cinurenina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismoRESUMO
Alcohol is the one of the major causes of liver diseases and promotes liver cirrhosis and hepatocellular carcinoma (HCC). In hepatocytes, alcohol is converted to acetaldehyde, which causes hepatic steatosis, cellular apoptosis, endoplasmic reticulum stress, peroxidation, production of cytokines and reduces immune surveillance. Endotoxin and lipopolysaccharide produced from intestinal bacteria also enhance the production of cytokines. The development of hepatic fibrosis and the occurrence of HCC are induced by these alcohol metabolites. Several host genetic factors have recently been identified in this process. Here, we reviewed the molecular mechanism associated with HCC in alcoholic liver disease.
Assuntos
Carcinoma Hepatocelular , Hepatopatias Alcoólicas , Neoplasias Hepáticas , Consumo de Bebidas Alcoólicas/efeitos adversos , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/genética , Citocinas , Etanol , Humanos , Cirrose Hepática/complicações , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/genéticaRESUMO
Metabolic syndrome is associated with obesity, insulin resistance, and the risk of cancer. We tested whether oncogenic transcription factor c-JUN metabolically reprogrammed cells to induce obesity and cancer by reduction of glucose uptake, with promotion of the stemness phenotype leading to malignant transformation. Liquid alcohol, high-cholesterol, fat diet (HCFD), and isocaloric dextrin were fed to wild-type or experimental mice for 12 months to promote hepatocellular carcinoma (HCC). We demonstrated 40% of mice developed liver tumors after chronic HCFD feeding. Disruption of liver-specific c-Jun reduced tumor incidence 4-fold and improved insulin sensitivity. Overexpression of c-JUN downregulated RICTOR transcription, leading to inhibition of the mTORC2/AKT and glycolysis pathways. c-JUN inhibited GLUT1, 2, and 3 transactivation to suppress glucose uptake. Silencing of RICTOR or c-JUN overexpression promoted self-renewal ability. Taken together, c-JUN inhibited mTORC2 via RICTOR downregulation and inhibited glucose uptake via downregulation of glucose intake, leading to self-renewal and obesity.
RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces inflammatory response, cytokine storm, venous thromboembolism, coagulopathy, and multiple organ damage. Resting endothelial cells prevent coagulation, control blood flow, and inhibit inflammation. However, it remains unknown how SARS-CoV-2 induces strong molecular signals in distant cells for immunopathogenesis. In this study, we examined the consequence of human endothelial cells, microvascular endothelial cells (HMEC-1), and liver endothelial cells (TMNK-1) to exosomes isolated from plasma of mild or severe COVID-19 patients. We observed a significant induction of NLRP3, caspase-1, and interleukin-1ß (IL-1ß) mRNA expression in endothelial cells following exposure to exosomes from severe COVID-19 patients compared with that from patients with mild disease or healthy donors. Activation of caspase-1 was noted in the endothelial cell culture medium following exposure to the COVID-19 exosomes. Furthermore, COVID-19 exosomes significantly induced mature IL-1ß secretion in both HMEC-1 and TMNK-1 endothelial cell culture medium. Thus, our results demonstrated for the first time that exosomes from COVID-19 plasma trigger NLRP3 inflammasome in endothelial cells of distant organs resulting in IL-1ß secretion and inflammatory response. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global health problem. Although the vaccine controls infection, understanding the molecular mechanism of pathogenesis will help in developing future therapies. Furthermore, several investigators predicted the involvement of endothelial cell-related inflammation in SARS-CoV-2 infection and using extracellular vesicles as a cargo to carry a drug or vaccine for combating SARS-CoV-2 infection. However, the mechanism by which endothelial cells are inflamed remains unknown. Our present study highlights that exosomes from severe COVID-19 patients can enhance inflammasome activity in distant endothelial cells for augmentation of immunopathogenesis and opens an avenue for developing therapies.
Assuntos
COVID-19 , Exossomos , Caspases , Células Endoteliais/metabolismo , Exossomos/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , SARS-CoV-2RESUMO
Long noncoding RNAs (lncRNAs) have gained widespread attention as a new layer of regulation in biological processes during development and disease. The lncRNA ELDR (EGFR long noncoding downstream RNA) was recently shown to be highly expressed in oral cancers as compared to adjacent nontumor tissue, and we previously reported that ELDR may be an oncogene as inhibition of ELDR reduces tumor growth in oral cancer models. Furthermore, overexpression of ELDR induces proliferation and colony formation in normal oral keratinocytes (NOKs). In this study, we examined in further detail how ELDR drives the neoplastic transformation of normal keratinocytes. We performed RNA-seq analysis on NOKs stably expressing ELDR (NOK-ELDR), which revealed that ELDR enhances the expression of cell cycle-related genes. Expression of Aurora kinase A and its downstream targets Polo-like kinase 1, cell division cycle 25C, cyclin-dependent kinase 1, and cyclin B1 (CCNB1) are significantly increased in NOK-ELDR cells, suggesting induction of G2/M progression. We further identified CCCTC-binding factor (CTCF) as a binding partner of ELDR in NOK-ELDR cells. We show that ELDR stabilizes CTCF and increases its expression. Finally, we demonstrate the ELDR-CTCF axis upregulates transcription factor Forkhead box M1, which induces Aurora kinase A expression and downstream G2/M transition. These findings provide mechanistic insights into the role of the lncRNA ELDR as a potential driver of oral cancer during neoplastic transformation of normal keratinocytes.
Assuntos
Fenômenos Biológicos , Queratinócitos , Neoplasias Bucais , RNA Longo não Codificante , Aurora Quinase A/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , RNA Longo não Codificante/genéticaRESUMO
Whole-genome sequencing and transcriptome analysis revealed more than 90% of the human genome transcribes noncoding RNAs including lncRNAs. From the beginning of the 21st century, lncRNAs have gained widespread attention as a new layer of regulation in biological processes. lncRNAs are > 200 nucleotides in size, transcribed by RNA polymerase II, and share many similarities with mRNAs. lncRNA interacts with DNA, RNA, protein, and miRNAs, thereby regulating many biological processes. In this review, we have focused mainly on LINC01156 [also known as the EGFR long non-coding downstream RNA (ELDR) or Fabl] and its biological importance. ELDR is a newly identified lncRNA and first reported in a mouse model, but it has a human homolog. The human ELDR gene is closely localized downstream of epidermal growth factor receptor (EGFR) gene at chromosome 7 on the opposite strand. ELDR is highly expressed in neuronal stem cells and associated with neuronal differentiation and mouse brain development. ELDR is upregulated in head and neck cancer, suggesting its role as an oncogene and its importance in prognosis and therapy. Publicly available RNA-seq data further support its oncogenic potential in different cancers. Here, we summarize all the aspects of ELDR in development and cancer, highlighting its future perspectives in the context of mechanism.
Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , RNA Longo não Codificante , Animais , Receptores ErbB/genética , Humanos , Camundongos , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genéticaRESUMO
Hepatocellular carcinoma (HCC) is one of the most common malignancy-related deaths. p53 mutation in HCC associates with worse clinicopathologic features including therapeutic limitation. A combination of targeted therapy may have some advantages. Akt/mTOR signaling contributes to the regulation of cell proliferation and cell death. Akt inhibitor (AZD5363) and mTORC1/2 dual inhibitor (AZD8055) are in a clinical trial for HCC and other cancers. In this study, we examined whether these inhibitors successfully induce antiproliferative activity in p53 mutant HCC cells, and the underlying mechanisms. We observed that a combination of AZD5363 and AZD8055 treatment synergizes antiproliferative activity on p53 mutated or wild-type HCC cell lines and induces apoptotic cell death. Mechanistic insights indicate that a combination of AZD5363 and AZD8055 activated FOXO3a to induce Bim-associated apoptosis in p53 mutated HCC cells, whereas cells retaining functional p53 enhanced Bax. siRNA-mediated knock-down of Bim or Bax prevented apoptosis in inhibitor-treated cells. We further observed a combination of treatment inhibits phosphorylation of FOXO3a and protects FOXO3a from MDM2 mediated degradation by preventing the phosphorylation of Akt and SGK1. FOXO3a accumulates in the nucleus under these conditions and induces Bim transcription in p53 mutant HCC cells. Combination treatment in the HCC cells expressing wild-type p53 causes interference of FOXO3a function for direct interaction with functional p53 and unable to induce Bim-associated cell death. On the other hand, Bim-associated cell death occurs in p53 mutant cells due to uninterrupted FOXO3a function. Overall, our findings suggested that a combined regimen of dual mTORC1/2 and Akt inhibitors may be an effective therapeutic strategy for HCC patients harboring p53 mutation.
Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , TransfecçãoRESUMO
Oral squamous cell carcinoma (OSCC) is one of the common lethal malignancies which is increasing rapidly in the world. Increasing risks from alcohol and tobacco habits, lack of early detection markers, lack of effective chemotherapeutic agents, recurrence and distant metastasis make the disease more complicated to manage. Laboratory-based studies and epidemiological studies indicate important roles of nutraceuticals to manage different cancers. The plant bitter melon (Momordica charantia) is a good source of nutrients and bio-active phytochemicals such as triterpenoids, triterpene glycosides, phenolic acids, flavonoids, lectins, sterols and proteins. The plant is widely grown in Asia, Africa, and South America. Bitter melon has traditionally been used as a folk medicine and Ayurvedic medicine in Asian culture to treat diseases such as diabetes, since ancient times. The crude extract and some of the isolated pure compounds of bitter melon show potential anticancer effects against different cancers. In this review, we shed light on its effect on OSCC. Bitter melon extract has been found to inhibit cell proliferation and metabolism, induce cell death and enhance the immune defense system in the prevention of OSCC in vitro and in vivo. Thus, bitter melon may be used as an attractive chemopreventive agent in progression towards OSCC clinical study.
RESUMO
Hepatitis C virus (HCV) regulates many cellular genes in modulating the host immune system for benefit of viral replication and long-term persistence in a host for chronic infection. Long noncoding RNAs (lncRNAs) play an important role in the regulation of many important cellular processes, including immune responses. We recently reported that HCV infection downregulates lncRNA Linc-Pint (long intergenic non-protein-coding RNA p53-induced transcript) expression, although the mechanism of repression and functional consequences are not well understood. In this study, we demonstrate that HCV infection of hepatocytes transcriptionally reduces Linc-Pint expression through CCAAT/enhancer binding protein ß (C/EBP-ß). Subsequently, we observed that the overexpression of Linc-Pint significantly upregulates interferon alpha (IFN-α) and IFN-ß expression in HCV-replicating hepatocytes. Using unbiased proteomics, we identified that Linc-Pint associates with DDX24, which enables RIP1 to interact with IFN-regulatory factor 7 (IRF7) of the IFN signaling pathway. We furthermore observed that IFN-α14 promoter activity was enhanced in the presence of Linc-Pint. Together, these results demonstrated that Linc-Pint acts as a positive regulator of host innate immune responses, especially IFN signaling. HCV-mediated downregulation of Linc-Pint expression appears to be one of the mechanisms by which HCV may evade innate immunity for long-term persistence and chronicity. IMPORTANCE The mechanism by which lncRNA regulates the host immune response during HCV infection is poorly understood. We observed that Linc-Pint was transcriptionally downregulated by HCV. Using a chromatin immunoprecipitation (ChIP) assay, we showed inhibition of transcription factor C/EBP-ß binding to the Linc-Pint promoter in the presence of HCV infection. We further identified that Linc-Pint associates with DDX24 for immunomodulatory function. The overexpression of Linc-Pint reduces DDX24 expression, which in turn results in the disruption of DDX24-RIP1 complex formation and the activation of IRF7. The induction of IFN-α14 promoter activity in the presence of Linc-Pint further confirms our observation. Together, our results suggest that Linc-Pint acts as a positive regulator of host innate immune responses. Downregulation of Linc-Pint expression by HCV helps in escaping the innate immune system for the development of chronicity.
Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Hepacivirus/imunologia , Hepatite C/imunologia , Imunidade Inata/imunologia , Interferon-alfa/metabolismo , Interferon beta/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , Proteína beta Intensificadora de Ligação a CCAAT/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Hepatite C/metabolismo , Hepatite C/virologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Interferon-alfa/genética , Interferon beta/genética , RNA Longo não Codificante/genética , Replicação ViralRESUMO
SARS-CoV-2 infection can cause cytokine storm and may overshoot immunity in humans; however, it remains to be determined whether virus-induced soluble mediators from infected cells are carried by exosomes as vehicles to distant organs and cause tissue damage in COVID-19 patients. We took an unbiased proteomic approach for analyses of exosomes isolated from plasma of healthy volunteers and COVID-19 patients. Our results revealed that tenascin-C (TNC) and fibrinogen-ß (FGB) are highly abundant in exosomes from COVID-19 patients' plasma compared with that of healthy normal controls. Since TNC and FGB stimulate pro-inflammatory cytokines via the Nuclear factor-κB (NF-κB) pathway, we examined the status of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and C-C motif chemokine ligand 5 (CCL5) expression upon exposure of hepatocytes to exosomes from COVID-19 patients and observed significant increase compared with that from healthy subjects. Together, our results demonstrate that TNC and FGB are transported through plasma exosomes and potentially trigger pro-inflammatory cytokine signaling in cells of distant organ.
Assuntos
COVID-19/sangue , Exossomos/química , Exossomos/genética , Fibrinogênio/metabolismo , Inflamação/metabolismo , Tenascina/metabolismo , Idoso , COVID-19/complicações , Linhagem Celular , Quimiocina CCL5/metabolismo , Exossomos/metabolismo , Exossomos/ultraestrutura , Feminino , Hepatócitos/metabolismo , Humanos , Inflamação/etiologia , Interleucina-6/metabolismo , Masculino , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Mapas de Interação de Proteínas , Proteoma/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Head and neck cancer (HNC) is one of the most aggressive cancers, and treatments are quite challenging due to the difficulty in early diagnosis, lack of effective chemotherapeutic drugs, adverse side effects and therapy resistance. We identified momordicine-I (M-I), a bioactive secondary metabolite in bitter melon (Momordica charantia), by performing liquid chromatography-high resolution electrospray ionization mass spectrometry (LC-HRESIMS) analysis. M-I inhibited human HNC cell (JHU022, JHU029, Cal27) viability in a dose-dependent manner without an apparent toxic effect on normal oral keratinocytes. Mechanistic studies showed that M-I inhibited c-Met and its downstream signaling molecules c-Myc, survivin, and cyclin D1 through the inactivation of STAT3 in HNC cells. We further observed that M-I was non-toxic and stable in mouse (male C57Bl/6) blood, and a favorable pharmacokinetics profile was observed after IP administration. M-I treatment reduced HNC xenograft tumor growth in nude mice and inhibited c-Met and downstream signaling. Thus, M-I has potential therapeutic implications against HNC.
RESUMO
Liver cancer is a global problem and hepatocellular carcinoma (HCC) accounts for about 85% of this cancer. In the USA, etiologies and risk factors for HCC include chronic hepatitis C virus (HCV) infection, diabetes, non-alcoholic steatohepatitis (NASH), obesity, excessive alcohol drinking, exposure to tobacco smoke, and genetic factors. Chronic HCV infection appears to be associated with about 30% of HCC. Chronic HCV infection induces multistep changes in liver, involving metabolic disorders, steatosis, cirrhosis and HCC. Liver carcinogenesis requires initiation of neoplastic clones, and progression to clinically diagnose malignancy. Tumor progression associates with profound exhaustion of tumor-antigen-specific CD8+T cells, and accumulation of PD-1hi CD8+T cells and Tregs. In this chapter, we provide a brief description of HCV and environmental/genetic factors, immune regulation, and highlight mechanisms of HCV associated HCC. We also underscore HCV treatment and recent paradigm of HCC progression, highlighted the current treatment and potential future therapeutic opportunities.
Assuntos
Carcinoma Hepatocelular/virologia , Hepacivirus/fisiologia , Hepatite C/patologia , Neoplasias Hepáticas/virologia , Animais , Carcinoma Hepatocelular/patologia , Progressão da Doença , Hepatite C/virologia , Humanos , Neoplasias Hepáticas/patologia , Fatores de RiscoRESUMO
BACKGROUND AND AIMS: HCV often causes chronic infection in liver, cirrhosis, and, in some instances, HCC. HCV encodes several factors' those impair host genes for establishment of chronic infection. The long noncoding RNAs (lncRNAs) display diverse effects on biological regulations. However, their role in virus replication and underlying diseases is poorly understood. In this study, we have shown that HCV exploits lncRNA long intergenic nonprotein-coding RNA, p53 induced transcript (Linc-Pint) in hepatocytes for enhancement of lipogenesis. APPROACH AND RESULTS: We identified a lncRNA, Linc-Pint, which is significantly down-regulated in HCV-replicating hepatocytes and liver specimens from HCV infected patients. Using RNA pull-down proteomics, we identified serine/arginine protein specific kinase 2 (SRPK2) as an interacting partner of Linc-Pint. A subsequent study demonstrated that overexpression of Linc-Pint inhibits the expression of lipogenesis-related genes, such as fatty acid synthase and ATP-citrate lyase. We also observed that Linc-Pint significantly inhibits HCV replication. Furthermore, HCV-mediated enhanced lipogenesis can be controlled by exogenous Linc-Pint expression. Together, our results suggested that HCV-mediated down-regulation of Linc-Pint enhances lipogenesis favoring virus replication and liver disease progression. CONCLUSIONS: We have shown that SRPK2 is a direct target of Linc-Pint and that depletion of SRPK2 inhibits lipogenesis. Our study contributes to the mechanistic understanding of the role of Linc-Pint in HCV-associated liver pathogenesis.
Assuntos
Hepatite C Crônica/patologia , Lipogênese/genética , Fígado/patologia , Proteínas Serina-Treonina Quinases/genética , RNA Longo não Codificante/metabolismo , Biópsia , Linhagem Celular , Progressão da Doença , Regulação para Baixo , Hepacivirus/patogenicidade , Hepatite C Crônica/virologia , Hepatócitos/patologia , Interações Hospedeiro-Patógeno/genética , Humanos , Fígado/virologiaRESUMO
Cytokine storm is suggested as one of the major pathological characteristics of SARS-CoV-2 infection, although the mechanism for initiation of a hyper-inflammatory response, and multi-organ damage from viral infection is poorly understood. In this virus-cell interaction study, we observed that SARS-CoV-2 infection or viral spike protein expression alone inhibited angiotensin converting enzyme-2 (ACE2) receptor protein expression. The spike protein promoted an angiotensin II type 1 receptor (AT1) mediated signaling cascade, induced the transcriptional regulatory molecules NF-κB and AP-1/c-Fos via MAPK activation, and increased IL-6 release. SARS-CoV-2 infected patient sera contained elevated levels of IL-6 and soluble IL-6R. Up-regulated AT1 receptor signaling also influenced the release of extracellular soluble IL-6R by the induction of the ADAM-17 protease. Use of the AT1 receptor antagonist, Candesartan cilexetil, resulted in down-regulation of IL-6/soluble IL-6R release in spike expressing cells. Phosphorylation of STAT3 at the Tyr705 residue plays an important role as a transcriptional inducer for SOCS3 and MCP-1 expression. Further study indicated that inhibition of STAT3 Tyr705 phosphorylation in SARS-CoV-2 infected and viral spike protein expressing epithelial cells did not induce SOCS3 and MCP-1 expression. Introduction of culture supernatant from SARS-CoV-2 spike expressing cells on a model human liver endothelial Cell line (TMNK-1), where transmembrane IL-6R is poorly expressed, resulted in the induction of STAT3 Tyr705 phosphorylation as well as MCP-1 expression. In conclusion, our results indicated that the presence of SARS-CoV-2 spike protein in epithelial cells promotes IL-6 trans-signaling by activation of the AT1 axis to initiate coordination of a hyper-inflammatory response.
Assuntos
COVID-19/imunologia , Interleucina-6/imunologia , Receptores de Angiotensina/metabolismo , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/metabolismo , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/virologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Interleucina-6/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , SARS-CoV-2/metabolismo , Transdução de Sinais/fisiologia , Ativação TranscricionalRESUMO
Oral squamous cell carcinoma (OSCC) is the sixth most common cancer with a 5-year overall survival rate of 50%. Thus, there is a critical need to understand the disease process, and to identify improved therapeutic strategies. Previously, we found the long non-coding RNA (lncRNA) EGFR long non-coding downstream RNA (ELDR) induced in a mouse tongue cancer model; however, its functional role in human oral cancer remained unknown. Here, we show that ELDR is highly expressed in OSCC patient samples and in cell lines. Overexpression of ELDR in normal non-tumorigenic oral keratinocytes induces cell proliferation, colony formation, and PCNA expression. We also show that ELDR depletion reduces OSCC cell proliferation and PCNA expression. Proteomics data identifies the RNA binding protein ILF3 as an interacting partner of ELDR. We further show that the ELDR-ILF3 axis regulates Cyclin E1 expression and phosphorylation of the retinoblastoma (RB) protein. Intratumoral injection of ELDR-specific siRNA reduces OSCC and PDX tumor growth in mice. These findings provide molecular insight into the role of ELDR in oral cancer and demonstrate that targeting ELDR has promising therapeutic potential.
Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , RNA Longo não Codificante , Animais , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Camundongos , Neoplasias Bucais/genética , RNA Longo não Codificante/genéticaRESUMO
Cancer is the second leading cause of death worldwide. Many dietary plant products show promising anticancer effects. Bitter melon or bitter gourd (Momordica charantia) is a nutrient-rich medicinal plant cultivated in tropical and subtropical regions of many countries. Traditionally, bitter melon is used as a folk medicine and contains many bioactive components including triterpenoids, triterpene glycoside, phenolic acids, flavonoids, lectins, sterols and proteins that show potential anticancer activity without significant side effects. The preventive and therapeutic effects of crude extract or isolated components are studied in cell line-based models and animal models of multiple types of cancer. In the present review, we summarize recent progress in testing the cancer preventive and therapeutic activity of bitter melon with a focus on underlying molecular mechanisms. The crude extract and its components prevent many types of cancers by enhancing reactive oxygen species generation; inhibiting cancer cell cycle, cell signaling, cancer stem cells, glucose and lipid metabolism, invasion, metastasis, hypoxia, and angiogenesis; inducing apoptosis and autophagy cell death, and enhancing the immune defense. Thus, bitter melon may serve as a promising cancer preventive and therapeutic agent.
RESUMO
Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death worldwide. High Akt activation and aberrant ß-catenin expression contribute to HCC cell proliferation, stem cell generation, and metastasis. Several signaling pathway-specific inhibitors are in clinical trials and display different efficacies against HCC. In this study, we observed that a ß-catenin inhibitor (FH535) displays antiproliferative effect on transformed human hepatocytes (THH). A combination treatment of these cells with FH535 and Akt inhibitor (AZD5363) exerted a stronger effect on cell death. Treatment of THH with AZD5363 and FH535 inhibited cell-cycle progression, enhanced autophagy marker protein expression, and autophagy-associated death, while FH535 treatment alone induced apoptosis. The use of chloroquine or z-VAD further verified these observations. Autophagy flux was evident from lowering marker proteins LAMP2, LAPTM4B, and autophagic protein expression by confocal microscopy using mCherry-EGFP-LC3 reporter construct. A combination treatment with AZD5363 and FH535 enhanced p53 expression, by modulating MDM2 activation; however, AZD5363 treatment alone restricted p53 to the nucleus by inhibiting dynamin-related protein activation. Nuclear p53 plays a crucial role for activation of autophagy by regulating the AMPK-mTOR-ULK1 pathway. Hep3B cells with null p53 did not modulate autophagy-dependent death from combination treatment. Together, our results strongly suggested that a combination treatment of Akt and ß-catenin inhibitors exhibits efficient therapeutic potential for HCC.