RESUMO
Although the world is acquitting from the throes of COVID-19 and returning to the regularity of life, its effects on physical and mental health are prominently evident in the post-pandemic era. The pandemic subjected us to inadequate sleep and physical activities, stress, irregular eating patterns, and work hours beyond the regular rest-activity cycle. Thus, perturbing the synchrony of the regular circadian clock functions led to chronic psychiatric and neurological disorders and poor immunological response in several COVID-19 survivors. Understanding the links between the host immune system and viral replication machinery from a clock-infection biology perspective promises novel avenues of intervention. Behavioral improvements in our daily lifestyle can reduce the severity and expedite the convalescent stage of COVID-19 by maintaining consistent eating, sleep, and physical activity schedules. Including dietary supplements and nutraceuticals with prophylactic value aids in combating COVID-19, as their deficiency can lead to a higher risk of infection, vulnerability, and severity of COVID-19. Thus, besides developing therapeutic measures, perpetual healthy practices could also contribute to combating the upcoming pandemics. This review highlights the impact of the COVID-19 pandemic on biological rhythms, sleep-wake cycles, physical activities, and eating patterns and how those disruptions possibly contribute to the response, severity, and outcome of SARS-CoV-2 infection.
RESUMO
Cancer represents a complex disease category defined by the unregulated proliferation and dissemination of anomalous cells within the human body. According to the GLOBOCAN 2020 report, the year 2020 witnessed the diagnosis of approximately 19.3 million new cases of cancer and 10.0 million individuals succumbed to the disease. A typical cell eventually becomes cancerous because of a long-term buildup of genetic instability and replicative immortality. Telomerase is a crucial regulator of cancer progression as it induces replicative immortality. In cancer cells, telomerase inhibits apoptosis by elongating the length of the telomeric region, which usually protects the genome from shortening. Many nanoparticles are documented as being available for detecting the presence of telomerase, and many were used as delivery systems to transport drugs. Furthermore, telomere homeostasis is regulated by the circadian time-keeping machinery, leading to 24-hour rhythms in telomerase activity and TERT mRNA expression in mammals. This review provides a comprehensive discussion of various kinds of nanoparticles used in telomerase detection, inhibition, and multiple drug-related pathways, as well as enlightens an imperative association between circadian rhythm and telomerase activity from the perspective of nanoparticle-based anticancer therapeutics.
Assuntos
Ritmo Circadiano , Nanopartículas , Neoplasias , Telomerase , Humanos , Telomerase/metabolismo , Ritmo Circadiano/fisiologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Animais , Nanopartículas/química , Antineoplásicos/farmacologiaRESUMO
The process of aging is an intrinsic and inevitable aspect of life that impacts every living organism. As biotechnological advancements continue to shape our understanding of medicine, peptide therapeutics have emerged as a promising strategy for anti-aging interventions. This is primarily due to their favorable attributes, such as low immunogenicity and cost-effective production. Peptide-based treatments have garnered widespread acceptance and interest in aging research, particularly in the context of age-related therapies. To effectively develop anti-aging treatments, a comprehensive understanding of the physicochemical characteristics of anti-aging peptides is essential. Factors such as amino acid composition, instability index, hydrophobic areas and other relevant properties significantly determine their efficacy as potential therapeutic agents. Consequently, the creation of 'AagingBase', a comprehensive database for anti-aging peptides, aims to facilitate research on aging by leveraging the potential of peptide therapies. AagingBase houses experimentally validated 282 anti-aging peptides collected from 54 research articles and 236 patents. Employing state-of-the-art computational techniques, the acquired sequences have undergone rigorous physicochemical calculations. Furthermore, AagingBase presents users with various informative analyses highlighting atomic compositions, secondary structure fractions, tertiary structure, amino acid compositions and frequencies. The database also offers advanced search and filtering options and similarity search, thereby aiding researchers in understanding their biological functions. Hence, the database enables efficient identification and prioritization of potential peptide candidates in geriatric medicine and holds immense potential for advancing geriatric medicine research and innovations. AagingBase can be accessed without any restriction. Database URL: https://project.iith.ac.in/cgntlab/aagingbase/.
Assuntos
Gerenciamento de Dados , Peptídeos , Peptídeos/química , Bases de Dados Factuais , AminoácidosRESUMO
Background: Circadian rhythms broadly impact human health by regulating our daily physiological and metabolic processes. The circadian clocks substantially regulate our immune responses and susceptibility to infections. Malaria parasites have intrinsic molecular oscillations and coordinate their infection cycle with host rhythms. Considering the cyclical nature of malaria, a clear understanding of the circadian regulations in malaria pathogenesis and host responses is of immense importance. Methods: We have thoroughly investigated the transcript level rhythmic patterns in blood proteins altered in falciparum and vivax malaria and malaria-related immune factors in mice, baboons, and humans by analyzing datasets from published literature and comprehensive databases. Using the Metascape and DAVID platforms, we analyzed Gene Ontology terms and physiological pathways associated with the rhythmic malaria-associated host immune factors. Results: We observed that almost 50% of the malaria-associated host immune factors are rhythmic in mice and humans. Overlapping rhythmic genes identified in mice, baboons, and humans, exhibited enrichment (Q < 0.05, fold-enrichment > 5) of multiple physiological pathways essential for host immune and defense response, including cytokine production, leukocyte activation, cellular defense, and response, regulation of kinase activity, B-cell receptor signaling pathway, and cellular response to cytokine stimulus. Conclusions: Our analysis indicates a robust circadian regulation on multiple interconnected host response pathways and immunological networks in malaria, evident from numerous rhythmic genes involved in those pathways. Host immune rhythms play a vital role in the temporal regulation of host-parasite interactions and defense machinery in malaria.
Assuntos
Relógios Circadianos , Malária , Humanos , Animais , Camundongos , Relógios Circadianos/genética , Fatores Imunológicos , Citocinas , PapioRESUMO
Mood disorders account for a significant global disease burden, and pharmacological innovation is needed as existing medications are suboptimal. A wide range of evidence implicates circadian and sleep dysfunction in the pathogenesis of mood disorders, and there is growing interest in these chronobiological pathways as a focus for treatment innovation. We review contemporary evidence in three promising areas in circadian-clock-based therapeutics in mood disorders: targeting the circadian system informed by mechanistic molecular advances; time-tailoring of medications; and personalizing treatment using circadian parameters. We also consider the limitations and challenges in accelerating the development of new circadian-informed pharmacotherapies for mood disorders.
Assuntos
Relógios Circadianos , Transtornos do Humor , Humanos , Transtornos do Humor/tratamento farmacológico , BiologiaRESUMO
Cardiovascular medicine witnessed notable advances for the past decade. Multiomics research offers a new lens for precision/personalized medicine for existing and emerging drugs used in the cardiovascular clinic. Beta-blockers are vital in treating hypertension and chronic heart failure. However, clinical use of beta-blockers is also associated with side effects and person-to-person variations in their pharmacokinetics and pharmacodynamics. A comprehensive understanding of the mechanisms that underpin the side effect landscape of beta-blockers is imperative to optimize their therapeutic value. In addition, current research emphasizes the circadian clock's vital roles in regulating pharmacological parameters. Administration of the beta-blockers at specific dosing times could potentially improve their effectiveness and reduce their toxic effects. The rapid development of mass spectrometry technologies with chemical proteomics and thermal proteome profiling methods has also substantially advanced our understanding of underlying side effects mechanisms by unbiased deconvolution of drug targets and off-targets. Metabolomics is steadily demonstrating its utility for conducting mechanistic and toxicological analyses of pharmacological compounds. This article discusses the promises of cutting-edge proteomics and metabolomics approaches to investigate the molecular targets, mechanism of action, adverse effects, and dosing time dependency of beta-blockers.
Assuntos
Hipertensão , Proteômica , Humanos , Proteômica/métodos , Antagonistas Adrenérgicos beta/efeitos adversos , Metabolômica , Sistemas de Liberação de MedicamentosRESUMO
Aging causes progressive deterioration of daily rhythms in behavioral and metabolic processes and disruption in the regular sleep-wake cycle. Circadian disruption is directly related to diverse age-induced health abnormalities. Rising evidence from various organisms shows that core clock gene mutations cause premature aging, reduced lifespan, and sleeping irregularities. Improving the clock functions and correcting its disruption by pharmacological interventions or time-regulated feeding patterns could be a novel avenue for effective clinical management of aging and sleep disorders. To this end, many drugs for sleep disorders and anti-aging compounds interact with the core clock machinery and alter the circadian output. Evaluation of dosing time-dependency and circadian regulation of drug metabolism for therapeutic improvement of the existing drugs is another fundamental facet of chronomedicine. Multiple studies have demonstrated dose-dependent manipulation of the circadian period and phase-shifting by pharmacologically active compounds. The chronobiology research field is gradually moving towards the development of novel therapeutic strategies based on targeting the molecular clock or dosing time-oriented medications. However, such translational research ventures would require more experimental evidence from studies on humans. This review discusses the impact of circadian rhythms on aging and sleep, emphasizing the potentiality of circadian medicine in aging attenuation and sleep disorders.
Assuntos
Ritmo Circadiano , Transtornos do Sono-Vigília , Humanos , Sono , Envelhecimento/fisiologia , Transtornos do Sono-Vigília/tratamento farmacológicoRESUMO
As we gaze into the future beyond the current coronavirus disease 2019 (COVID-19) pandemic, there is a need to rethink our priorities in planetary health, research funding, and, importantly, the concepts and unchecked assumptions by which we attempt to understand health and prevent illness. Next-generation quantitative omics technologies promise a more profound and panoptic understanding of the dynamic pathophysiological processes and their aberrations in diverse diseased conditions. Systems biology research is highly relevant for COVID-19, a systemic disease affecting multiple organs and biological pathways. In addition, expanding the concept of health beyond humans so as to capture the importance of ecosystem health and recognizing the interdependence of human, animal, and plant health are enormously relevant and timely in the current historical moment of the pandemic. Notably, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing COVID-19, can affect our body clock, and the circadian aspects of this viral infection and host immunity need to be considered for its effective clinical management. Finally, we need to rethink and expand beyond the false binaries such as humans versus nature, and deploy multiomics systems biology research if we intend to design effective, innovative, and socioecological planetary health interventions to prevent future pandemics and ecological crises. We argue here that juxtaposing ecology and human health sciences scholarship is one of the key emerging tenets of 21st-century integrative biology.
Assuntos
COVID-19 , Saúde Única , Animais , Humanos , SARS-CoV-2 , Ecossistema , Biologia de SistemasRESUMO
Every day, we sleep for a third of the day. Sleep is important for cognition, brain waste clearance, metabolism, and immune responses. The molecular mechanisms governing sleep are largely unknown. Here, we used a combination of single-cell RNA sequencing and cell-type-specific proteomics to interrogate the molecular underpinnings of sleep. Different cell types in three important brain regions for sleep (brainstem, cortex, and hypothalamus) exhibited diverse transcriptional responses to sleep need. Sleep restriction modulates astrocyte-neuron crosstalk and sleep need enhances expression of specific sets of transcription factors in different brain regions. In cortex, we also interrogated the proteome of two major cell types: astrocytes and neurons. Sleep deprivation differentially alters the expression of proteins in astrocytes and neurons. Similarly, phosphoproteomics revealed large shifts in cell-type-specific protein phosphorylation. Our results indicate that sleep need regulates transcriptional, translational, and post-translational responses in a cell-specific manner.
Assuntos
Proteômica , Transcriptoma , Astrócitos/metabolismo , Humanos , Proteômica/métodos , Sono/genética , Privação do Sono/genéticaRESUMO
BACKGROUND: Intrinsic rhythms in host and cancer cells play an imperative role in tumorigenesis and anticancer therapy. Circadian medicine in cancer is principally reliant on the control of growth and development of cancer cells or tissues by targeting the molecular clock and implementing time-of-day-based anticancer treatments for therapeutic improvements. In recent years, based on extensive high-throughput studies, we witnessed the arrival of several drugs and drug-like compounds that can modulate circadian timekeeping for therapeutic gain in cancer management. OBJECTIVE: This perspective article intends to illustrate the current trends in circadian medicine in cancer, focusing on clock-modulating pharmacological compounds and circadian regulation of anticancer drug metabolism and efficacy. Scope and Approach: Considering the critical roles of the circadian clock in metabolism, cell signaling, and apoptosis, chronopharmacology research is exceedingly enlightening for understanding cancer biology and improving anticancer therapeutics. In addition to reviewing the relevant literature, we investigated the rhythmic expression of molecular targets for many anticancer drugs frequently used to treat different cancer types. Key Findings and Conclusion: There are adequate empirical pieces of evidence supporting circadian regulation of drug metabolism, transport, and detoxification. Administration of anticancer drugs at specific dosing times can improve their effectiveness and reduce the toxic effects. Moreover, pharmacological modulators of the circadian clock could be used for targeted anticancer therapeutics such as boosting circadian rhythms in the host can markedly reduce the growth and viability of tumors. All in all, precision chronomedicine can offer multiple advantages over conventional anticancer therapy.
Assuntos
Antineoplásicos/farmacologia , Carcinogênese , Relógios Circadianos , Cronofarmacoterapia , Neoplasias , Administração Metronômica , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Cronofarmacocinética , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Humanos , Quimioterapia de Manutenção/métodos , Quimioterapia de Manutenção/tendências , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologiaRESUMO
The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world and infected hundreds of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the virus's structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis and in understanding potential differences among variants. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune system's protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease. IMPORTANCE COVID-19 involves a number of organ systems and can present with a wide range of symptoms. From how the virus infects cells to how it spreads between people, the available research suggests that these patterns are very similar to those seen in the closely related viruses SARS-CoV-1 and possibly Middle East respiratory syndrome-related CoV (MERS-CoV). Understanding the pathogenesis of the SARS-CoV-2 virus also contextualizes how the different biological systems affected by COVID-19 connect. Exploring the structure, phylogeny, and pathogenesis of the virus therefore helps to guide interpretation of the broader impacts of the virus on the human body and on human populations. For this reason, an in-depth exploration of viral mechanisms is critical to a robust understanding of SARS-CoV-2 and, potentially, future emergent human CoVs (HCoVs).
RESUMO
Ness-Cohn et al claim that our observations of transcriptional circadian rhythms in the absence of the core clock gene Bmal1 in mouse skin fibroblast cells are supported by inadequate evidence. They claim that they were unable to reproduce some of the original ï¬ndings with their reanalysis. We disagree with their analyses and outlook.
Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Fatores de Transcrição ARNTL/genética , Animais , Ritmo Circadiano/genética , CamundongosRESUMO
Abruzzi et al argue that transcriptome oscillations found in our study in the absence of Bmal1 are of low amplitude, statistical significance, and consistency. However, their conclusions rely solely on a different statistical algorithm than we used. We provide statistical measures and additional analyses showing that our original analyses and observations are accurate. Further, we highlight independent lines of evidence indicating Bmal1-independent 24-hour molecular oscillations.
Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Fatores de Transcrição ARNTL/genética , Ritmo Circadiano/genética , TranscriptomaRESUMO
The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world and infected hundreds of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the virus's structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis and in understanding potential differences among variants. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune system's protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease.
RESUMO
Circadian clocks coordinate mammalian behavior and physiology enabling organisms to anticipate 24-hour cycles. Transcription-translation feedback loops are thought to drive these clocks in most of mammalian cells. However, red blood cells (RBCs), which do not contain a nucleus, and cannot perform transcription or translation, nonetheless exhibit circadian redox rhythms. Here we show human RBCs display circadian regulation of glucose metabolism, which is required to sustain daily redox oscillations. We found daily rhythms of metabolite levels and flux through glycolysis and the pentose phosphate pathway (PPP). We show that inhibition of critical enzymes in either pathway abolished 24-hour rhythms in metabolic flux and redox oscillations, and determined that metabolic oscillations are necessary for redox rhythmicity. Furthermore, metabolic flux rhythms also occur in nucleated cells, and persist when the core transcriptional circadian clockwork is absent in Bmal1 knockouts. Thus, we propose that rhythmic glucose metabolism is an integral process in circadian rhythms.
Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Eritrócitos/metabolismo , Glicólise/fisiologia , Via de Pentose Fosfato/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Células Cultivadas , Fibroblastos , Técnicas de Inativação de Genes , Voluntários Saudáveis , Humanos , Masculino , Metabolômica , Camundongos , Oxirredução , Cultura Primária de CélulasRESUMO
The whole world is still suffering substantially from the coronavirus disease 2019 (COVID-19) outbreak. Several protein-based molecules that are associated with the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which are essential for its functionality, survival, and pathogenesis have been identified and are considered as potential therapeutic targets. These protein-based molecules are either structural/non-structural components of SARS-CoV-2 or host factors, which play a crucial role in this infection. Developing drug molecules against these essential functional molecules to hinder their regular functioning and associated physiological pathways could be promising for successful clinical management of this novel coronavirus infection. The review aims to highlight the functional molecules that play crucial roles in SARS-CoV-2 pathogenesis. We have emphasized how these potential druggable targets could be beneficial in tackling the COVID-19 crisis.
Assuntos
Antivirais/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , COVID-19/transmissão , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Humanos , Metiltransferases/química , Metiltransferases/metabolismo , Terapia de Alvo Molecular , RNA Helicases/química , RNA Helicases/metabolismo , RNA Viral/genética , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Virulência , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19RESUMO
Nowadays, e-learning and virtual labs have gained substantial popularity in science education. Amid the COVID-19 shutdowns, regular in-person classroom teaching and lab courses are suspended in several countries worldwide. In this scenario, virtual classes and online resources could serve more effectively as a possible alternative way of learning science from home.
RESUMO
Management of severe malaria remains a critical global challenge. In this study, using a multiplexed quantitative proteomics pipeline we systematically investigated the plasma proteome alterations in non-severe and severe malaria patients. We identified a few parasite proteins in severe malaria patients, which could be promising from a diagnostic perspective. Further, from host proteome analysis we observed substantial modulations in many crucial physiological pathways, including lipid metabolism, cytokine signaling, complement, and coagulation cascades in severe malaria. We propose that severe manifestations of malaria are possibly underpinned by modulations of the host physiology and defense machinery, which is evidently reflected in the plasma proteome alterations. Importantly, we identified multiple blood markers that can effectively define different complications of severe falciparum malaria, including cerebral syndromes and severe anemia. The ability of our identified blood markers to distinguish different severe complications of malaria may aid in developing new clinical tests for monitoring malaria severity.
Assuntos
Malária Falciparum/diagnóstico , Malária Falciparum/patologia , Proteômica/métodos , Anemia/diagnóstico , Anemia/patologia , Biomarcadores/sangue , Dengue/diagnóstico , Dengue/metabolismo , Dengue/patologia , Humanos , Malária Falciparum/metabolismo , Malária Vivax/sangue , Malária Vivax/metabolismo , Malária Vivax/patologiaRESUMO
Blood plasma is one of the most widely used samples for cancer biomarker discovery research as well as clinical investigations for diagnostic and therapeutic purposes. However, the plasma proteome is extremely complex due to its wide dynamic range of protein concentrations and the presence of high-abundance proteins. Here we have described an optimized, integrated quantitative proteomics pipeline combining the label-free and multiplexed-labeling-based (iTRAQ and TMT) plasma proteome profiling methods for biomarker discovery, followed by the targeted approaches for validation of the identified potential marker proteins. In this workflow, the targeted quantitation of proteins is carried out by multiple-reaction monitoring (MRM) and parallel-reaction monitoring (PRM) mass spectrometry. Thus, our approach enables both unbiased screenings of biomarkers and their subsequent selective validation in human plasma. The overall procedure takes only ~2 days to complete, including the time for data acquisition (excluding database searching). This protocol is quick, flexible, and eliminates the need for a separate immunoassay-based validation workflow in blood cancer biomarker investigations. We anticipate that this plasma proteomics workflow will help to accelerate the cancer biomarker discovery program and provide a valuable resource to the cancer research community.