Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940070

RESUMO

Encounters between animals occur when animals are close in space and time. Encounters are important in many ecological processes including sociality, predation and disease transmission. Despite this, there is little theory regarding the spatial distribution of encounters and no formal framework to relate environmental characteristics to encounters. The probability of encounter could be estimated with resource selection functions (RSFs) by comparing locations where encounters occurred to available locations where they may have occurred, but this estimate is complicated by the hierarchical nature of habitat selection. We developed a method to relate resources to the relative probability of encounter based on a scale-integrated habitat selection framework. This framework integrates habitat selection at multiple scales to obtain an appropriate estimate of availability for encounters. Using this approach, we related encounter probabilities to landscape resources. The RSFs describe habitat associations at four scales, home ranges within the study area, areas of overlap within home ranges, locations within areas of overlap, and encounters compared to other locations, which can be combined into a single scale-integrated RSF. We apply this method to intraspecific encounter data from two species: white-tailed deer (Odocoileus virginianus) and elk (Cervus elaphus) and interspecific encounter data from a two-species system of caribou (Rangifer tarandus) and coyote (Canis latrans). Our method produced scale-integrated RSFs that represented the relative probability of encounter. The predicted spatial distribution of encounters obtained based on this scale-integrated approach produced distributions that more accurately predicted novel encounters than a naïve approach or any individual scale alone. Our results highlight the importance of accounting for the conditional nature of habitat selection in estimating the habitat associations of animal encounters as opposed to 'naïve' comparisons of encounter locations with general availability. This method has direct relevance for testing hypotheses about the relationship between habitat and social or predator-prey behaviour and generating spatial predictions of encounters. Such spatial predictions may be vital for understanding the distribution of encounters driving disease transmission, predation rates and other population and community-level processes.

2.
J Anim Ecol ; 90(5): 1264-1275, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33630313

RESUMO

Wildlife migrations provide important ecosystem services, but they are declining. Within the Greater Yellowstone Ecosystem (GYE), some elk Cervus canadensis herds are losing migratory tendencies, which may increase spatiotemporal overlap between elk and livestock (domestic bison Bison bison and cattle Bos taurus), potentially exacerbating pathogen transmission risk. We combined disease, movement, demographic and environmental data from eight elk herds in the GYE to examine the differential risk of brucellosis transmission (through aborted foetuses) from migrant and resident elk to livestock. For both migrants and residents, we found that transmission risk from elk to livestock occurred almost exclusively on private ranchlands as opposed to state or federal grazing allotments. Weather variability affected the estimated distribution of spillover risk from migrant elk to livestock, with a 7%-12% increase in migrant abortions on private ranchlands during years with heavier snowfall. In contrast, weather variability did not affect spillover risk from resident elk. Migrant elk were responsible for the majority (68%) of disease spillover risk to livestock because they occurred in greater numbers than resident elk. On a per-capita basis, however, our analyses suggested that resident elk disproportionately contributed to spillover risk. In five of seven herds, we estimated that the per-capita spillover risk was greater from residents than from migrants. Averaged across herds, an individual resident elk was 23% more likely than an individual migrant elk to abort on private ranchlands. Our results demonstrate links between migration behaviour, spillover risk and environmental variability, and highlight the utility of integrating models of pathogen transmission and host movement to generate new insights about the role of migration in disease spillover risk. Furthermore, they add to the accumulating body of evidence across taxa that suggests that migrants and residents should be considered separately during investigations of wildlife disease ecology. Finally, our findings have applied implications for elk and brucellosis in the GYE. They suggest that managers should prioritize actions that maintain spatial separation of elk and livestock on private ranchlands during years when snowpack persists into the risk period.


Assuntos
Brucelose , Doenças dos Bovinos , Cervos , Animais , Animais Selvagens , Brucella abortus , Bovinos , Ecossistema
3.
J Anim Ecol ; 87(3): 874-887, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29450888

RESUMO

Prey abundance and prey vulnerability vary across space and time, but we know little about how they mediate predator-prey interactions and predator foraging tactics. To evaluate the interplay between prey abundance, prey vulnerability and predator space use, we examined patterns of black bear (Ursus americanus) predation of caribou (Rangifer tarandus) neonates in Newfoundland, Canada using data from 317 collared individuals (9 bears, 34 adult female caribou, 274 caribou calves). During the caribou calving season, we predicted that landscape features would influence calf vulnerability to bear predation, and that bears would actively hunt calves by selecting areas associated with increased calf vulnerability. Further, we hypothesized that bears would dynamically adjust their foraging tactics in response to spatiotemporal changes in calf abundance and vulnerability (collectively, calf availability). Accordingly, we expected bears to actively hunt calves when they were most abundant and vulnerable, but switch to foraging on other resources as calf availability declined. As predicted, landscape heterogeneity influenced risk of mortality, and bears displayed the strongest selection for areas where they were most likely to kill calves, which suggested they were actively hunting caribou. Initially, the per-capita rate at which bears killed calves followed a type-I functional response, but as the calving season progressed and calf vulnerability declined, kill rates dissociated from calf abundance. In support of our hypothesis, bears adjusted their foraging tactics when they were less efficient at catching calves, highlighting the influence that predation phenology may have on predator space use. Contrary to our expectations, however, bears appeared to continue to hunt caribou as calf availability declined, but switched from a tactic of selecting areas of increased calf vulnerability to a tactic that maximized encounter rates with calves. Our results reveal that generalist predators can dynamically adjust their foraging tactics over short time-scales in response to changing prey abundance and vulnerability. Further, they demonstrate the utility of integrating temporal dynamics of prey availability into investigations of predator-prey interactions, and move towards a mechanistic understanding of the dynamic foraging tactics of a large omnivore.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Rena/fisiologia , Ursidae/fisiologia , Animais , Animais Recém-Nascidos/fisiologia , Meio Ambiente , Feminino , Terra Nova e Labrador , Dinâmica Populacional , Análise Espaço-Temporal
4.
Oecologia ; 186(1): 141-150, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167983

RESUMO

For many organisms, climate change can directly drive population declines, but it is less clear how such variation may influence populations indirectly through modified biotic interactions. For instance, how will climate change alter complex, multi-species relationships that are modulated by climatic variation and that underlie ecosystem-level processes? Caribou (Rangifer tarandus), a keystone species in Newfoundland, Canada, provides a useful model for unravelling potential and complex long-term implications of climate change on biotic interactions and population change. We measured cause-specific caribou calf predation (1990-2013) in Newfoundland relative to seasonal weather patterns. We show that black bear (Ursus americanus) predation is facilitated by time-lagged higher summer growing degree days, whereas coyote (Canis latrans) predation increases with current precipitation and winter temperature. Based on future climate forecasts for the region, we illustrate that, through time, coyote predation on caribou calves could become increasingly important, whereas the influence of black bear would remain unchanged. From these predictions, demographic projections for caribou suggest long-term population limitation specifically through indirect effects of climate change on calf predation rates by coyotes. While our work assumes limited impact of climate change on other processes, it illustrates the range of impact that climate change can have on predator-prey interactions. We conclude that future efforts to predict potential effects of climate change on populations and ecosystems should include assessment of both direct and indirect effects, including climate-predator interactions.


Assuntos
Mudança Climática , Ecossistema , Animais , Canadá , Bovinos , Dinâmica Populacional , Comportamento Predatório
5.
Oecologia ; 185(4): 725-735, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29038862

RESUMO

Anthropogenic disturbances have altered species' distributions potentially impacting interspecific interactions. Interference competition is when one species denies a competing species access to a resource. One mechanism of interference competition is aggression, which can result in altered space-use of a subordinate species due to the threat of harm, otherwise known as a 'landscape of fear'. Alternatively, subordinates might outcompete dominant species in resource-poor environments via a superior ability to extract resources. Our goal was to evaluate spatial predictions of the 'landscape of fear' hypothesis for a carnivore guild in Newfoundland, Canada, where coyotes recently immigrated. Native Newfoundland carnivores include red foxes, Canada lynx, and black bears. We predicted foxes and lynx would avoid coyotes because of their larger size and similar dietary niches. We used scat-detecting dogs and genetic techniques to locate and identify predator scats. We then built resource selection functions and tested for avoidance by incorporating predicted values of selection for the alternative species into the best supported models of each species. We found multiple negative relationships, but notably did not find avoidance by foxes of areas selected by coyotes. While we did find that lynx avoided coyotes, we also found a reciprocal relationship. The observed patterns suggest spatial partitioning and not coyote avoidance, although avoidance could still be occurring at different spatial or temporal scales. Furthermore, Newfoundland's harsh climate and poor soils may swing the pendulum of interspecific interactions from interference competition to exploitative competition, where subordinates outcompete dominant competitors through a superior ability to extract resources.


Assuntos
Carnívoros/fisiologia , Animais , Canadá , Clima , Dieta , Ecossistema , Comportamento Predatório
6.
J Anim Ecol ; 85(2): 445-56, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26529139

RESUMO

Climate can have direct and indirect effects on population dynamics via changes in resource competition or predation risk, but this influence may be modulated by density- or phase-dependent processes. We hypothesized that for ungulates, climatic conditions close to parturition have a greater influence on the predation risk of neonates during population declines, when females are already under nutritional stress triggered by food limitation. We examined the presence of phase-dependent climate-predator (PDCP) interactions on neonatal ungulate survival by comparing spatial and temporal fluctuations in climatic conditions, cause-specific mortality and per capita resource limitation. We determined cause-specific fates of 1384 caribou (Rangifer tarandus) from 10 herds in Newfoundland, spanning more than 30 years during periods of numerical increase and decline, while exposed to predation from black bears (Ursus americanus) and coyotes (Canis latrans). We conducted Cox proportional hazards analysis for competing risks, fit as a function of weather metrics, to assess pre- and post-partum climatic influences on survival on herds in population increase and decline phases. We used cumulative incidence functions to compare temporal changes in risk from predators. Our results support our main hypothesis; when caribou populations increased, weather conditions preceding calving were the main determinants of cause-specific mortality, but when populations declined, weather conditions during calving also influenced predator-driven mortality. Cause-specific analysis showed that weather conditions can differentially affect predation risk between black bears and coyotes with specific variables increasing the risk from one species and decreasing the risk from the other. For caribou, nutritional stress appears to increase predation risk on neonates, an interaction which is exacerbated by susceptibility to climatic events. These findings support the PDCP interactions framework, where maternal body condition influences susceptibility to climate-related events and, subsequently, risk from predation.


Assuntos
Animais Recém-Nascidos/fisiologia , Clima , Cadeia Alimentar , Rena/fisiologia , Animais , Coiotes/fisiologia , Feminino , Longevidade , Masculino , Modelos Biológicos , Terra Nova e Labrador , Comportamento Predatório , Modelos de Riscos Proporcionais , Ursidae/fisiologia , Tempo (Meteorologia)
7.
Animals (Basel) ; 3(3): 670-9, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26479527

RESUMO

Increasingly, habitat fragmentation caused by agricultural and human development has forced Sumatran elephants into relatively small areas, but there is little information on how elephants use these areas and thus, how habitats can be managed to sustain elephants in the future. Using a Global Positioning System (GPS) collar and a land cover map developed from TM imagery, we identified the habitats used by a wild adult female elephant (Elephas maximus sumatranus) in the Seblat Elephant Conservation Center, Bengkulu Province, Sumatra during 2007-2008. The marked elephant (and presumably her 40-60 herd mates) used a home range that contained more than expected medium canopy and open canopy land cover. Further, within the home range, closed canopy forests were used more during the day than at night. When elephants were in closed canopy forests they were most often near the forest edge vs. in the forest interior. Effective elephant conservation strategies in Sumatra need to focus on forest restoration of cleared areas and providing a forest matrix that includes various canopy types.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA