Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 225(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36168768

RESUMO

Accelerative manoeuvres, such as fast-starts, are crucial for fish to avoid predation. Escape responses are fast-starts that include fundamental survival traits for prey that experience high predation pressure. However, no previous study has assessed escape performance in neonate tropical sharks. We quantitatively evaluated vulnerability traits of neonate tropical sharks by testing predictions on their fast-start escape performance. We predicted (1) high manoeuvrability, given their high flexibility, but (2) low propulsive locomotion owing to the drag costs associated with pectoral fin extension during escape responses. Further, based on previous work on dogfish, Squalus suckleyi, we predicted (3) long reaction times (as latencies longer than teleosts, >20 ms). We used two-dimensional, high-speed videography analysis of mechano-acoustically stimulated neonate blacktip reef shark, Carcharhinus melanopterus (n=12), and sicklefin lemon shark, Negaprion acutidens (n=8). Both species performed a characteristic C-start double-bend response (i.e. two body bends), but single-bend responses were only observed in N. acutidens. As predicted, neonate sharks showed high manoeuvrability with high turning rates and tight turning radii (3-11% of body length) but low propulsive performance (i.e. speed, acceleration and velocity) when compared with similar-sized teleosts and S. suckleyi. Contrary to expectations, escape latencies were <20 ms in both species, suggesting that the neurophysiological system of sharks when reacting to a predatory attack may not be limited to long response times. These results provide a quantitative assessment of survival traits in neonate tropical sharks that will be crucial for future studies that consider the vulnerability of these sharks to predation.


Assuntos
Tubarões , Animais , Tubarões/fisiologia , Fenômenos Biomecânicos , Comportamento Predatório/fisiologia , Locomoção , Cação (Peixe)
2.
Mar Pollut Bull ; 142: 31-42, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31232309

RESUMO

Several dolphin species occur close inshore and in harbours, where underwater noise generated by pile-driving used in wharf construction may constitute an important impact. Such impacts are likely to be greatest on species such as the endangered Hector's dolphin (Cephalorhynchus hectori), which has small home ranges and uses this habitat type routinely. Using automated echolocation detectors in Lyttelton Harbour (New Zealand), we studied the distribution of Hector's dolphins using a gradient sampling design over 92 days within which pile-driving occurred on 46 days. During piling operations, dolphin positive minutes per day decreased at the detector closest to the piling but increased at the mid-harbour detector. Finer-grained analyses showed that close to the piling operation, detections decreased with increasing sound exposure level, that longer piling events were associated with longer reductions in detections, and that effects were long-lasting - detection rates took up to 83 h to return to pre-piling levels.


Assuntos
Golfinhos , Ruído/efeitos adversos , Animais , Ecolocação , Nova Zelândia , Instalações de Transporte
3.
J Acoust Soc Am ; 140(1): 322, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27475156

RESUMO

Quantitatively describing the acoustic repertoire of a species is important for establishing effective passive acoustic monitoring programs and developing automated call detectors. This process is particularly important when the study site is remote and visual surveys are not cost effective. Little is known about the vocal behavior of southern right whales (Eubalaena australis) in New Zealand. The aim of this study was to describe and quantify their entire vocal repertoire on calving grounds in the sub-Antarctic Auckland Islands. Over three austral winters (2010-2012), 4349 calls were recorded, measured, and classified into 10 call types. The most frequently observed types were pulsive, upcall, and tonal low vocalizations. A long tonal low call (≤15.5 s duration) and a very high call (peak frequency ∼750 Hz) were described for the first time. Random Forest multivariate analysis of 28 measured variables was used to classify calls with a high degree of accuracy (82%). The most important variables for classification were maximum ceiling frequency, number of inflection points, duration, and the difference between the start and end frequency. This classification system proved to be a repeatable, fast, and objective method for categorising right whale calls and shows promise for other vocal taxa.


Assuntos
Vocalização Animal/fisiologia , Baleias/fisiologia , Acústica , Animais , Nova Zelândia , Estações do Ano , Espectrografia do Som , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA