Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
PLoS Pathog ; 20(3): e1011775, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527086

RESUMO

Changes in parasite virulence are commonly expected to lead to trade-offs in other life history traits that can affect fitness. Understanding these trade-offs is particularly important if we want to manipulate the virulence of microbial biological control agents. Theoretically, selection across different spatial scales, i.e. between- and within-hosts, shapes these trade-offs. However, trade-offs are also dependent on parasite biology. Despite their applied importance the evolution of virulence in fungal parasites is poorly understood: virulence can be unstable in culture and commonly fails to increase in simple passage experiments. We hypothesized that manipulating selection intensity at different scales would reveal virulence trade-offs in a fungal pathogen of aphids, Akanthomyces muscarius. Starting with a genetically diverse stock we selected for speed of kill, parasite yield or infectivity by manipulating competition within and between hosts and between-populations of hosts over 7 rounds of infection. We characterized ancestral and evolved lineages by whole genome sequencing and by measuring virulence, growth rate, sporulation and fitness. While several lineages showed increases in virulence, we saw none of the trade-offs commonly found in obligately-killing parasites. Phenotypically similar lineages within treatments often shared multiple single-nucleotide variants, indicating strong convergent evolution. The most dramatic phenotypic changes were in timing of sporulation and spore production in vitro. We found that early sporulation led to reduced competitive fitness but could increase yield of spores on media, a trade-off characteristic of social conflict. Notably, the selection regime with strongest between-population competition and lowest genetic diversity produced the most consistent shift to early sporulation, as predicted by social evolution theory. Multi-level selection therefore revealed social interactions novel to fungi and showed that these biocontrol agents have the genomic flexibility to improve multiple traits-virulence and spore production-that are often in conflict in other parasites.


Assuntos
Afídeos , Parasitos , Animais , Evolução Biológica , Fenótipo , Interações Hospedeiro-Parasita/genética
2.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513149

RESUMO

Gut microbiota plays a functional role in nutrition among several insects. However, the situation is unclear in Lepidoptera. Field studies suggest the microbiome may not be stable and is determined by diet, while in the laboratory, Lepidoptera are routinely reared on diet containing antibiotics with unknown effects on microbial communities. Furthermore, molecular approaches for the characterization of lepidopteran microbiomes rarely describe the metabolically active gut bacteria. The aim of this study was to evaluate how diet and antibiotics affect Spodoptera exigua (Hübner) growth and the diversity and activity of the gut bacteria community. We assessed how alfalfa and wheat germ-based diets affected larval growth, in the presence and absence of streptomycin. Alfalfa diet improved larval growth, pupal mass, and survival, but antibiotic was only beneficial in the wheat germ diet. We observed diet-driven changes in the gut bacterial communities. In the active community, the alfalfa colony was dominated by Enterococcus and Rhodococcus whereas in the wheat germ colony, only Enterococcus was present. In contrast, spore-forming Bacilli species were very common members of the DNA community. In both cases, streptomycin had a selective effect on the relative abundance of the taxa present. Our study highlights the importance of characterizing both the diversity and activity of the gut microbiota community. DNA-derived communities may include environmental DNA, spores, or non-viable bacteria, while RNA-derived communities are more likely to give an accurate representation of the diversity of active members that are potentially directly involved in the metabolic processes of the host.


Assuntos
Mariposas , Animais , Spodoptera/genética , Mariposas/genética , Bactérias , Larva , Antibacterianos/farmacologia , Estreptomicina/farmacologia , Dieta , DNA/farmacologia
3.
Access Microbiol ; 5(6)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424543

RESUMO

The entomopathogenic fungus Akanthomyces muscarius is commonly used in agriculture to manage insect pests. Besides its use as a commercially important biological control agent, it also presents a potential model for studying host-pathogen interactions and the evolution of virulence in a laboratory setting. Here, we describe the first high-quality genome sequence for A. muscarius. We used long- and short-read sequencing to assemble a sequence of 36.1 Mb with an N50 of 4.9 Mb. Genome annotation predicted 12347 genes, with 96.6 % completeness based on the core Hypocrealen gene set. The high-quality assembly and annotation of A. muscarius presented in this study provides an essential tool for future research on this commercially important species.

4.
Microbiology (Reading) ; 169(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418300

RESUMO

Widespread antibiotic resistance in commensal bacteria creates a persistent challenge for human health. Resident drug-resistant microbes can prevent clinical interventions, colonize wounds post-surgery, pass resistance traits to pathogens or move to more harmful niches following routine interventions such as catheterization. Accelerating the removal of resistant bacteria or actively decolonizing particular lineages from hosts could therefore have a number of long-term benefits. However, removing resident bacteria via competition with probiotics, for example, poses a number of ecological challenges. Resident microbes are likely to have physiological and numerical advantages and competition based on bacteriocins or other secreted antagonists is expected to give advantages to the dominant partner, via positive frequency dependence. Since a narrow range of Escherichia coli genotypes (primarily those belonging to the clonal group ST131) cause a significant proportion of multidrug-resistant infections, this group presents a promising target for decolonization with bacteriophage, as narrow-host-range viral predation could lead to selective removal of particular genotypes. In this study we tested how a combination of an ST131-specific phage and competition from the well-known probiotic E. coli Nissle strain could displace E. coli ST131 under aerobic and anaerobic growth conditions in vitro. We showed that the addition of phage was able to break the frequency-dependent advantage of a numerically dominant ST131 isolate. Moreover, the addition of competing E. coli Nissle could improve the ability of phage to suppress ST131 by two orders of magnitude. Low-cost phage resistance evolved readily in these experiments and was not inhibited by the presence of a probiotic competitor. Nevertheless, combinations of phage and probiotic produced stable long-term suppression of ST131 over multiple transfers and under both aerobic and anaerobic growth conditions. Combinations of phage and probiotic therefore have real potential for accelerating the removal of drug-resistant commensal targets.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Probióticos , Humanos , Escherichia coli/fisiologia , Infecções por Escherichia coli/microbiologia , Bacteriófagos/genética , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia
5.
Appl Environ Microbiol ; 89(7): e0051223, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358425

RESUMO

The pesticidal toxins of Bacillus thuringiensis (Bt) supply the active proteins for genetically modified insect-resistant crops. There is therefore keen interest in finding new toxins, or improving known toxins, in order to increase the mortality of various targets. The production and screening of large libraries of mutagenized toxins are among the means of identifying improved toxins. Since Cry toxins are public goods, and do not confer advantages to producers in competition, conventional directed evolution approaches cannot be used here. Instead, thousands of individual mutants have to be sequenced and assayed individually, a costly and time-consuming process. In this study, we tested a group selection-based approach that could be used to screen an uncharacterized pool of Cry toxin mutants. This involved selecting for infectivity between subpopulations of Bt clones within metapopulations of infected insects in three rounds of passage. We also tested whether additional mutagenesis from exposure to ethyl methanesulfonate could increase infectivity or supply additional Cry toxin diversity during passage. Sequencing of pools of mutants at the end of selection showed that we could effectively screen out Cry toxin variants that had reduced toxicity with our group selection approach. The addition of extra mutagenesis during passage decreased the efficiency of selection for infectivity and did not produce any additional novel toxin diversity. Toxins with loss-of-function mutations tend to dominate mutagenized libraries, and so a process for screening out these mutants without time-consuming sequencing and characterization steps could be beneficial when applied to larger libraries. IMPORTANCE Insecticidal toxins from the bacterium Bacillus thuringiensis are widely exploited in genetically modified plants. This application creates a demand for novel insecticidal toxins that can be used to better manage resistant pests or control new or recalcitrant target species. An important means of producing novel toxins is via high-throughput mutagenesis and screening of existing toxins, a lengthy and resource-intensive process. This study describes the development and testing of an efficient means of screening a test library of mutagenized insecticidal toxins. Here, we showed that it is possible to screen out loss-of-function mutations with low infectivity within a pool without the need to characterize and sequence each mutant individually. This has the potential to improve the efficiency of processes used to identify novel proteins.


Assuntos
Bacillus thuringiensis , Inseticidas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Insetos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
Evol Appl ; 16(3): 705-720, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36969139

RESUMO

Passage experiments that sequentially infect hosts with parasites have long been used to manipulate virulence. However, for many invertebrate pathogens, passage has been applied naively without a full theoretical understanding of how best to select for increased virulence and this has led to very mixed results. Understanding the evolution of virulence is complex because selection on parasites occurs across multiple spatial scales with potentially different conflicts operating on parasites with different life histories. For example, in social microbes, strong selection on replication rate within hosts can lead to cheating and loss of virulence, because investment in public goods virulence reduces replication rate. In this study, we tested how varying mutation supply and selection for infectivity or pathogen yield (population size in hosts) affected the evolution of virulence against resistant hosts in the specialist insect pathogen Bacillus thuringiensis, aiming to optimize methods for strain improvement against a difficult to kill insect target. We show that selection for infectivity using competition between subpopulations in a metapopulation prevents social cheating, acts to retain key virulence plasmids, and facilitates increased virulence. Increased virulence was associated with reduced efficiency of sporulation, and possible loss of function in putative regulatory genes but not with altered expression of the primary virulence factors. Selection in a metapopulation provides a broadly applicable tool for improving the efficacy of biocontrol agents. Moreover, a structured host population can facilitate artificial selection on infectivity, while selection on life-history traits such as faster replication or larger population sizes can reduce virulence in social microbes.

7.
Access Microbiol ; 5(12)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188242

RESUMO

Predicting the conditions under which rhizobacteria benefit plant growth remains challenging. Here we tested the hypothesis that benefits from inoculation with phosphate-solubilizing rhizobacteria will depend upon two environmental conditions: phosphate availability and competition between bacteria. We used maize-associated rhizobacteria with varying phosphate solubilization ability in experiments in soil, sterilized soil and gnotobiotic microcosms under conditions of varying orthophosphate availability, while we manipulated the intensity of competition by varying the number of isolates in plant inocula. Growth promotion by microbes did not depend on phosphate availability but was affected by interactions between inoculants: the beneficial effects of one Serratia isolate were only detectable when plants were inoculated with a single strain and the beneficial effects of a competition-sensitive Rhizobium was only detectable in sterilized soil or in microcosms inoculated with single strains. Moreover, microcosm experiments suggested that facilitation of a parasitic isolate, not competitive interactions between bacteria, prevented plants from gaining benefits from a potential mutualist. Competition and facilitation affected colonization of plants in microcosms but growth promotion by Serratia was more affected by inoculation treatment than culturable densities on roots. Experimental manipulation of seed inocula can reveal whether plant growth stimulation is robust with respect to competition, as well as the ecological strategies of different rhizobacteria. From an applied perspective, phosphate solubilization may not provide the mechanism for bacterial growth promotion but may indicate mutualistic potential due to phylogenetic associations. Importantly, benefits to plants are vulnerable to interactions between rhizobacteria and may not persist in mixed inoculations.

8.
BMC Public Health ; 22(1): 1780, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127670

RESUMO

INTRODUCTION: The 21st century was marked by a dramatic increase in adolescent e-cigarette use in the United States (US). The popularity of non-traditional flavor types, including fruit and pastry, is thought to contribute toward growing product use nationally, leading to a variety of federal and state regulations limiting the use of non-traditional flavors in the US. The relationship between flavor type and increased adolescent use suggests a possible link between flavor use and addiction and harm perception. This study assessed if the flavor type used when initiating e-cigarette use predicted addiction and harm perceptions. METHODS: The study utilized data from the multi-wave youth Population Assessment of Tobacco Health Study. It explored the impact initiating e-cigarette use with traditional versus non-traditional flavor types among cigarette users on the outcome variables: e-cigarette addiction and harm perception. Both e-cigarette addiction and harm perception were measured using self-report, Likert scale questionnaires. Descriptive statistics characterized the study variables and linear regression analyses performed to test whether flavor initiation type is associated with addiction and harm perception. RESULTS: The study sample consisted of 1,043 youth (weighted N = 1,873,617) aged 12 to 17 years who reported at least one instance of e-cigarette use. After adjusting for age, age of onset, sex, race and annual household income there was no statistically significant difference in addiction levels between those initiating with traditional versus non-traditional flavors (p = 0.294). Similarly, traditional versus non-traditional flavor initiation did not show a statistically significant difference in adolescent e-cigarette harm perceptions (p = 0.601). CONCLUSIONS: Traditionally flavored e-cigarette initiation produces similar risk for addiction and harm perceptions as non-traditionally flavored initiation. These findings suggest that banning non-traditional flavors alone may be ineffective in curbing e-cigarette addiction and harm perception. Additional research is needed to better understand which e-cigarette product characteristics and behaviors may be associated with greater addiction and reduced harm perceptions.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Adolescente , Aromatizantes , Humanos , Percepção , Estados Unidos/epidemiologia , Vaping/epidemiologia
9.
Mol Ecol ; 31(13): 3584-3597, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35510788

RESUMO

Bacterial clades are often ecologically distinct, despite extensive horizontal gene transfer (HGT). How selection works on different parts of bacterial pan-genomes to drive and maintain the emergence of clades is unclear. Focusing on the three largest clades in the diverse and well-studied Bacillus cereus sensu lato group, we identified clade-specific core genes (present in all clade members) and then used clade-specific allelic diversity to identify genes under purifying and diversifying selection. Clade-specific accessory genes (present in a subset of strains within a clade) were characterized as being under selection using presence/absence in specific clades. Gene ontology analyses of genes under selection revealed that different gene functions were enriched in different clades. Furthermore, some gene functions were enriched only amongst clade-specific core or accessory genomes. Genes under purifying selection were often clade-specific, while genes under diversifying selection showed signs of frequent HGT. These patterns are consistent with different selection pressures acting on both the core and the accessory genomes of different clades and can lead to ecological divergence in both cases. Examining variation in allelic diversity allows us to uncover genes under clade-specific selection, allowing ready identification of strains and their ecological niche.


Assuntos
Bacillus cereus , Genoma Bacteriano , Bacillus cereus/genética , Transferência Genética Horizontal/genética , Genoma Bacteriano/genética , Fenótipo , Filogenia
10.
Arch Public Health ; 80(1): 114, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395821

RESUMO

BACKGROUND: Despite controversy over their possible health consequences, manufacturers of e-cigarettes employ a variety of marketing media to increase their popularity among adolescents. This study analyzed the relationship between adolescent e-cigarette harm perception and five types of e-cigarette advertising exposures: social media, radio, billboard, newspaper, and television. METHODS: This study used data from Wave 4.5 of the Population Assessment of Tobacco and Health Study (PATH). PATH collects demographic data and interview individuals about issues pertaining to tobacco use, health outcomes, attitudes, and behaviors. This study applied factor analysis to three individual PATH harm perception items to develop a composite harm perception score. Using linear regression, the study explored the relationship of harm perception and participant responses to their recalled viewing of five different types (i.e., newspaper, radio, billboard, television and social media) of advertisements within the past 30 days. A second analysis explored if adjusting for exposure to anti-tobacco messaging and environmental factors such as family approval mitigated the association of harm perception and advertisement types. RESULTS: The study sample consisted of 12,570 (weighted N = 23,993,149) individuals aged 12 to 17 years old. Unadjusted past 30-day exposure to newspaper, radio, billboard, and social media advertising all correlated with a reduced harm perception, but only the associations for newspaper and social media were statistically significant (p<0.05). After adjusting for environmental support factors, exposure to warning labels, and anti-tobacco advertisements, the analysis yielded statistically significant associations between increased e-cigarette harm perception and exposure to radio, billboard, and television advertisements (p<0.05). Adjusting for covariates also reduced the association of marketing and harm perception for all forms of media. CONCLUSION: E-cigarette advertising influences adolescent perceptions of harm in e-cigarette use, particularly for social media and newspaper advertisements. This association weakens when adjusted for covariates such as environmental support and exposure to anti-tobacco marketing. These findings provide evidence for policy makers to continue anti-tobacco marketing and incorporate environmentally supportive strategies such as holistic, family-centered educational approaches to reduce e-cigarette use among adolescents.

11.
J Invertebr Pathol ; 187: 107692, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798134

RESUMO

Understanding the ecological and genetic factors that determine the evolution of virulence has broad value for invertebrate pathology. In addition to helping us understand the fundamental biology of our study organisms this body of theory has important applications in microbial biocontrol. Experimental tests of virulence theory are often carried out in invertebrate models and yet theory rarely informs applied passage experiments that aim to increase or maintain virulence. This review summarizes recent progress in this field with a focus on work most relevant to biological control: the virulence of invertebrate pathogens that are 'obligate killers' and which require cadavers for the production of infectious propagules. We discuss recent theory and fundamental and applied experimental evolution with bacteria, fungi, baculoviruses and nematodes. While passage experiments using baculoviruses have a long history of producing isolates with increased virulence, studies with other pathogens have not been so successful. Recent passage experiments that have applied evolution of virulence frameworks based on cooperation (kin selection) have produced novel methods and promising mutants with increased killing power. Evolution of virulence theory can provide plausible explanations for the varied results of passage experiments as well as a predictive framework for improving artificial selection.


Assuntos
Evolução Biológica , Nematoides , Animais , Baculoviridae , Fungos/genética , Virulência
12.
Pest Manag Sci ; 77(11): 5286-5293, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34310830

RESUMO

BACKGROUND: Biological control is a cornerstone of integrated pest management and could also play a key role in managing the evolution of insecticide resistance. Ecological theory predicts that the fitness cost of insecticide resistance can be increased under exposure to invertebrate natural enemies or pathogens, and can therefore increase the value of integrating biological control into pest management. In this study of the peach potato aphid, Myzus persicae, we aimed to identify whether insecticide resistance affected fitness and vulnerability of different aphid clones to the entomopathogenic fungus Akanthomyces muscarius. RESULTS: Insecticide resistant clones were found to be slightly less susceptible to the pathogen than susceptible clones. However, this pattern could also be explained by the influence of length of laboratory culture, which was longer in susceptible clones and was positively correlated with susceptibility to fungi. Furthermore, resistance status did not affect aphid development time or intrinsic rate of increase of aphids. Finally, in a cage trial the application of fungus did not increase the competitive fitness of insecticide resistant clone 'O'. CONCLUSION: We found no fitness cost in reproductive rate or pathogen susceptibility associated with chemical resistance in M. persicae. In contrast, some susceptible clones, particularly those subject to decades of laboratory rearing, showed enhanced susceptibility to a fungal pathogen, but not reduced reproductive fitness, an observation consistent with down-regulation of costly immune functions in culture. Overall, fungal pathogen control is compatible with insecticides and should not increase the selection pressure for resistance of M. persicae to chemical insecticides.


Assuntos
Afídeos , Hypocreales , Inseticidas , Animais , Células Clonais , Resistência a Inseticidas/genética , Inseticidas/farmacologia
13.
Environ Microbiol ; 23(10): 6089-6103, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34190398

RESUMO

Rhizobacterial communities are important for plant health but we still have limited understanding of how they are constructed or how they can be manipulated. High-throughput 16S rRNA sequencing provides good information on taxonomic composition but remains an unreliable proxy for phenotypes. In this study, we tested the hypothesis that experimentally observed functional traits would be better predictors of community membership than phylogenetic origin. To test this hypothesis, we sampled communities on four plant species grown in two soil types and characterized 593 bacterial isolates in terms of antibiotic susceptibility, carbon metabolism, resource use and plant growth-promoting traits. In support of our hypothesis we found that three of the four plant species had phylogenetically diverse, but functionally constrained communities. Notably, communities did not grow best on complex media mimicking their host of origin but were distinguished by variation in overall growth characteristics (copiotrophy/oligotrophy) and antibiotic susceptibility. These data, combined with variation in phylogenetic structure, suggest that different classes of traits (antagonistic competition or resource-based) are more important in different communities. This culture-based approach supports and complements the findings of a previous high-throughput 16S rRNA analysis of this experiment and provides functional insights into the patterns observed with culture-independent methods.


Assuntos
Rizosfera , Microbiologia do Solo , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Solo
14.
Malar J ; 20(1): 149, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726763

RESUMO

BACKGROUND: The African Union's High-Level Panel on Emerging Technologies identified gene drive mosquitoes as a priority technology for malaria elimination. The first field trials are expected in 5-10 years in Uganda, Mali or Burkina Faso. In preparation, regional and international actors are developing risk governance guidelines which will delineate the framework for identifying and evaluating risks. Scientists and bioethicists have called for African stakeholder involvement in these developments, arguing the knowledge and perspectives of those people living in malaria-afflicted countries is currently missing. However, few African stakeholders have been involved to date, leaving a knowledge gap about the local social-cultural as well as ecological context in which gene drive mosquitoes will be tested and deployed. This study investigates and analyses Ugandan stakeholders' hopes and concerns about gene drive mosquitoes for malaria control and explores the new directions needed for risk governance. METHODS: This qualitative study draws on 19 in-depth semi-structured interviews with Ugandan stakeholders in 2019. It explores their hopes for the technology and the risks they believed pertinent. Coding began at a workshop and continued through thematic analysis. RESULTS: Participants' hopes and concerns for gene drive mosquitoes to address malaria fell into three themes: (1) ability of gene drive mosquitoes to prevent malaria infection; (2) impacts of gene drive testing and deployment; and, (3) governance. Stakeholder hopes fell almost exclusively into the first theme while concerns were spread across all three. The study demonstrates that local stakeholders are able and willing to contribute relevant and important knowledge to the development of risk frameworks. CONCLUSIONS: International processes can provide high-level guidelines, but risk decision-making must be grounded in the local context if it is to be robust, meaningful and legitimate. Decisions about whether or not to release gene drive mosquitoes as part of a malaria control programme will need to consider the assessment of both the risks and the benefits of gene drive mosquitoes within a particular social, political, ecological, and technological context. Just as with risks, benefits-and importantly, the conditions that are necessary to realize them-must be identified and debated in Uganda and its neighbouring countries.


Assuntos
Animais Geneticamente Modificados/psicologia , Anopheles/genética , Controle de Doenças Transmissíveis/instrumentação , Tecnologia de Impulso Genético/psicologia , Malária/prevenção & controle , Mosquitos Vetores/genética , Participação dos Interessados , Animais , Medição de Risco , Uganda
15.
Ecol Appl ; 31(4): e02306, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33595860

RESUMO

Managing ecosystems in the face of complex species interactions, and the associated uncertainty, presents a considerable ecological challenge. Altering those interactions via actions such as invasive species management or conservation translocations can result in unintended consequences, supporting the need to be able to make more informed decisions in the face of this uncertainty. We demonstrate the utility of ecosystem models to reduce uncertainty and inform future ecosystem management. We use Phillip Island, Australia, as a case study to investigate the impacts of two invasive species management options and consider whether a critically endangered mammal is likely to establish a population in the presence of invasive species. Qualitative models are used to determine the effects of apex predator removal (feral cats) and invasive prey removal (rabbits, rats, and mice). We extend this approach using Ensemble Ecosystem Models to consider how suppression, rather than eradication influences the species community; and consider whether an introduction of the critically endangered eastern barred bandicoot is likely to be successful in the presence of invasive species. Our analysis revealed the potential for unintended outcomes associated with feral cat control operations, with rats and rabbits expected to increase in abundance. A strategy based on managing prey species appeared to have the most ecosystem-wide benefits, with rodent control showing more favorable responses than a rabbit control strategy. Eastern barred bandicoots were predicted to persist under all feral cat control levels (including no control). Managing ecosystems is a complex and imprecise process. However, qualitative modeling and ensemble ecosystem modeling address uncertainty and are capable of improving and optimizing management practices. Our analysis shows that the best conservation outcomes may not always be associated with the top-down control of apex predators, and land managers should think more broadly in relation to managing bottom-up processes as well. Challenges faced in continuing to conserve biodiversity mean new, bolder, conservation actions are needed. We suggest that endangered species are capable of surviving in the presence of feral cats, potentially opening the door for more conservation translocations.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Austrália , Gatos , Conservação dos Recursos Naturais , Camundongos , Comportamento Predatório , Coelhos , Ratos , Incerteza
16.
Glob Chang Biol ; 27(9): 1692-1703, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629799

RESUMO

Globally, collapse of ecosystems-potentially irreversible change to ecosystem structure, composition and function-imperils biodiversity, human health and well-being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km2 , from Australia's coral reefs to terrestrial Antarctica. Pressures from global climate change and regional human impacts, occurring as chronic 'presses' and/or acute 'pulses', drive ecosystem collapse. Ecosystem responses to 5-17 pressures were categorised as four collapse profiles-abrupt, smooth, stepped and fluctuating. The manifestation of widespread ecosystem collapse is a stark warning of the necessity to take action. We present a three-step assessment and management framework (3As Pathway Awareness, Anticipation and Action) to aid strategic and effective mitigation to alleviate further degradation to help secure our future.


Assuntos
Recifes de Corais , Ecossistema , Regiões Antárticas , Biodiversidade , Mudança Climática , Humanos
17.
Ecol Evol ; 11(1): 227-241, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437425

RESUMO

Understanding regional-scale food web structure in the Southern Ocean is critical to informing fisheries management and assessments of climate change impacts on Southern Ocean ecosystems and ecosystem services. Historically, a large component of Southern Ocean ecosystem research has focused on Antarctic krill, which provide a short, highly efficient food chain, linking primary producers to higher trophic levels. Over the last 15 years, the presence of alternative energy pathways has been identified and hypotheses on their relative importance in different regions raised. Using the largest circumpolar dietary database ever compiled, we tested these hypotheses using an empirical circumpolar comparison of food webs across the four major regions/sectors of the Southern Ocean (defined as south of 40°S) within the austral summer period. We used network analyses and generalizations of taxonomic food web structure to confirm that while Antarctic krill are dominant as the mid-trophic level for the Atlantic and East Pacific food webs (including the Scotia Arc and Western Antarctic Peninsula), mesopelagic fish and other krill species are dominant contributors to predator diets in the Indian and West Pacific regions (East Antarctica and the Ross Sea). We also highlight how tracking data and habitat modeling for mobile top predators in the Southern Ocean show that these species integrate food webs over large regional scales. Our study provides a quantitative assessment, based on field observations, of the degree of regional differentiation in Southern Ocean food webs and the relative importance of alternative energy pathways between regions.

18.
FEMS Microbiol Ecol ; 97(1)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33175127

RESUMO

The Bacillus cereus group encompasses beneficial and harmful species in diverse niches and has a much debated taxonomy. Investigating whether selection has led to ecological divergence between phylogenetic clades can help understand the basis of speciation, and has implications for predicting biological safety across this group. Using three most terrestrial species in this group (B. cereus, Bacillus thuringiensis and Bacillus mycoides) we charactererized ecological specialization in terms of resource use, thermal adaptation and fitness in different environmental conditions and tested whether taxonomic species or phylogenetic clade best explained phenotypic variation. All isolates grew vigorously in protein rich media and insect cadavers, but exploitation of soil or plant derived nutrients was similarly weak for all. For B. thuringiensis and B. mycoides, clade and taxonomic species were important predictors of relative fitness in insect infections. Fully psychrotolerant isolates could outcompete B. thuringiensis in insects at low temperature, although psychrotolerance predicted growth in artificial media better than clade. In contrast to predictions, isolates in the Bacillus anthracis clade had sub-optimal growth at 37°C. The common ecological niche in these terrestrial B. cereus species is the ability to exploit protein rich resources such as cadavers. However, selection has led to different phylogenetic groups developing different strategies for accessing this resource. Thus, clades, as well as traditional taxonomic phenotypes, predict biologically important traits.


Assuntos
Bacillus anthracis , Bacillus thuringiensis , Bacillus , Animais , Bacillus cereus/genética , Bacillus thuringiensis/genética , Filogenia
19.
Nature ; 583(7817): 567-571, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32669711

RESUMO

Recent assessments of Earth's dwindling wilderness have emphasized that Antarctica is a crucial wilderness in need of protection1,2. Yet human impacts on the continent are widespread3-5, the extent of its wilderness unquantified2 and the importance thereof for biodiversity conservation unknown. Here we assemble a comprehensive record of human activity (approximately 2.7 million records, spanning 200 years) and use it to quantify the extent of Antarctica's wilderness and its representation of biodiversity. We show that 99.6% of the continent's area can still be considered wilderness, but this area captures few biodiversity features. Pristine areas, free from human interference, cover a much smaller area (less than 32% of Antarctica) and are declining as human activity escalates6. Urgent expansion of Antarctica's network of specially protected areas7 can both reverse this trend and secure the continent's biodiversity8-10.


Assuntos
Biodiversidade , Meio Selvagem , Animais , Regiões Antárticas , Conservação dos Recursos Naturais , História do Século XIX , História do Século XX , História do Século XXI , Atividades Humanas/história
20.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32661001

RESUMO

The acquisition of antibiotic resistance commonly imposes fitness costs, a reduction in the fitness of bacteria in the absence of drugs. These costs have been quantified primarily using in vitro experiments and a small number of in vivo studies in mice, and it is commonly assumed that these diverse methods are consistent. Here, we used an insect model of infection to compare the fitness costs of antibiotic resistance in vivo to those in vitro Experiments explored diverse mechanisms of resistance in a Gram-positive pathogen, Bacillus thuringiensis, and a Gram-negative intestinal symbiont, Enterobacter cloacae Rifampin resistance in B. thuringiensis showed fitness costs that were typically elevated in vivo, although these were modulated by genotype-environment interactions. In contrast, resistance to cefotaxime via derepression of AmpC ß-lactamase in E. cloacae resulted in no detectable costs in vivo or in vitro, while spontaneous resistance to nalidixic acid, and carriage of the IncP plasmid RP4, imposed costs that increased in vivo Overall, fitness costs in vitro were a poor predictor of fitness costs in vivo because of strong genotype-environment interactions throughout this study. Insect infections provide a cheap and accessible means of assessing the fitness consequences of resistance mutations, data that are important for understanding the evolution and spread of resistance. This study emphasizes that the fitness costs imposed by particular mutations or different modes of resistance are extremely variable and that only a subset of these mutations is likely to be prevalent outside the laboratory.


Assuntos
Bacillus thuringiensis , Enterobacter cloacae , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Genótipo , Insetos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA