Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Twin Res Hum Genet ; 26(1): 10-20, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36896826

RESUMO

Reading difficulties are prevalent worldwide, including in economically developed countries, and are associated with low academic achievement and unemployment. Longitudinal studies have identified several early childhood predictors of reading ability, but studies frequently lack genotype data that would enable testing of predictors with heritable influences. The National Child Development Study (NCDS) is a UK birth cohort study containing direct reading skill variables at every data collection wave from age 7 years through to adulthood with a subsample (final n = 6431) for whom modern genotype data are available. It is one of the longest running UK cohort studies for which genotyped data are currently available and is a rich dataset with excellent potential for future phenotypic and gene-by-environment interaction studies in reading. Here, we carry out imputation of the genotype data to the Haplotype Reference Panel, an updated reference panel that offers greater imputation quality. Guiding phenotype choice, we report a principal components analysis of nine reading variables, yielding a composite measure of reading ability in the genotyped sample. We include recommendations for use of composite scores and the most reliable variables for use during childhood when conducting longitudinal, genetically sensitive analyses of reading ability.


Assuntos
Desenvolvimento Infantil , Cognição , Humanos , Pré-Escolar , Estudos de Coortes , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Hum Mol Genet ; 32(8): 1266-1275, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36349687

RESUMO

Cardiometabolic diseases, such as type 2 diabetes and cardiovascular disease, have a high public health burden. Understanding the genetically determined regulation of proteins that are dysregulated in disease can help to dissect the complex biology underpinning them. Here, we perform a protein quantitative trait locus (pQTL) analysis of 248 serum proteins relevant to cardiometabolic processes in 2893 individuals. Meta-analyzing whole-genome sequencing (WGS) data from two Greek cohorts, MANOLIS (n = 1356; 22.5× WGS) and Pomak (n = 1537; 18.4× WGS), we detect 301 independently associated pQTL variants for 170 proteins, including 12 rare variants (minor allele frequency < 1%). We additionally find 15 pQTL variants that are rare in non-Finnish European populations but have drifted up in the frequency in the discovery cohorts here. We identify proteins causally associated with cardiometabolic traits, including Mep1b for high-density lipoprotein (HDL) levels, and describe a knock-out (KO) Mep1b mouse model. Our findings furnish insights into the genetic architecture of the serum proteome, identify new protein-disease relationships and demonstrate the importance of isolated populations in pQTL analysis.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Fenótipo , Sequenciamento Completo do Genoma , Proteínas Sanguíneas/genética , Estudo de Associação Genômica Ampla
3.
Nat Metab ; 4(12): 1697-1712, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36536132

RESUMO

Here we report a heterozygous tandem duplication at the ASIP (agouti signaling protein) gene locus causing ubiquitous, ectopic ASIP expression in a female patient with extreme childhood obesity. The mutation places ASIP under control of the ubiquitously active itchy E3 ubiquitin protein ligase promoter, driving the generation of ASIP in patient-derived native and induced pluripotent stem cells for all germ layers and hypothalamic-like neurons. The patient's phenotype of early-onset obesity, overgrowth, red hair and hyperinsulinemia is concordant with that of mutant mice ubiquitously expressing the homolog nonagouti. ASIP represses melanocyte-stimulating hormone-mediated activation as a melanocortin receptor antagonist, which might affect eating behavior, energy expenditure, adipocyte differentiation and pigmentation, as observed in the index patient. As the type of mutation escapes standard genetic screening algorithms, we rescreened the Leipzig Childhood Obesity cohort of 1,745 patients and identified four additional patients with the identical mutation, ectopic ASIP expression and a similar phenotype. Taken together, our data indicate that ubiquitous ectopic ASIP expression is likely a monogenic cause of human obesity.


Assuntos
Obesidade Infantil , Criança , Humanos , Feminino , Animais , Camundongos , Proteína Agouti Sinalizadora/genética , Proteína Agouti Sinalizadora/metabolismo , Pigmentação/genética , Mutação , Fenótipo
4.
Circ Genom Precis Med ; 14(5): e002862, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34601942

RESUMO

BACKGROUND: Peripheral artery disease (PAD) affects >200 million people worldwide and is associated with high mortality and morbidity. We sought to identify genomic variants associated with PAD overall and in the contexts of diabetes and smoking status. METHODS: We identified genetic variants associated with PAD and then meta-analyzed with published summary statistics from the Million Veterans Program and UK Biobank to replicate their findings. Next, we ran stratified genome-wide association analysis in ever smokers, never smokers, individuals with diabetes, and individuals with no history of diabetes and corresponding interaction analyses, to identify variants that modify the risk of PAD by diabetic or smoking status. RESULTS: We identified 5 genome-wide significant (Passociation ≤5×10-8) associations with PAD in 449 548 (Ncases=12 086) individuals of European ancestry near LPA (lipoprotein [a]), CDKN2BAS1 (CDKN2B antisense RNA 1), SH2B3 (SH2B adaptor protein 3) - PTPN11 (protein tyrosine phosphatase non-receptor type 11), HDAC9 (histone deacetylase 9), and CHRNA3 (cholinergic receptor nicotinic alpha 3 subunit) loci (which overlapped previously reported associations). Meta-analysis with variants previously associated with PAD showed that 18 of 19 published variants remained genome-wide significant. In individuals with diabetes, rs116405693 at the CCSER1 (coiled-coil serine rich protein 1) locus was associated with PAD (odds ratio [95% CI], 1.51 [1.32-1.74], Pdiabetes=2.5×10-9, Pinteractionwithdiabetes=5.3×10-7). Furthermore, in smokers, rs12910984 at the CHRNA3 locus was associated with PAD (odds ratio [95% CI], 1.15 [1.11-1.19], Psmokers=9.3×10-10, Pinteractionwithsmoking=3.9×10-5). CONCLUSIONS: Our analyses confirm the published genetic associations with PAD and identify novel variants that may influence susceptibility to PAD in the context of diabetes or smoking status.


Assuntos
Predisposição Genética para Doença , Doença Arterial Periférica/genética , Polimorfismo de Nucleotídeo Único , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Doença Arterial Periférica/epidemiologia
5.
Nat Commun ; 11(1): 6336, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303764

RESUMO

The human proteome is a crucial intermediate between complex diseases and their genetic and environmental components, and an important source of drug development targets and biomarkers. Here, we comprehensively assess the genetic architecture of 257 circulating protein biomarkers of cardiometabolic relevance through high-depth (22.5×) whole-genome sequencing (WGS) in 1328 individuals. We discover 131 independent sequence variant associations (P < 7.45 × 10-11) across the allele frequency spectrum, all of which replicate in an independent cohort (n = 1605, 18.4x WGS). We identify for the first time replicating evidence for rare-variant cis-acting protein quantitative trait loci for five genes, involving both coding and noncoding variation. We construct and validate polygenic scores that explain up to 45% of protein level variation. We find causal links between protein levels and disease risk, identifying high-value biomarkers and drug development targets.


Assuntos
Miocárdio/metabolismo , Proteoma/genética , Sequenciamento Completo do Genoma , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Herança Multifatorial/genética , Proteoma/metabolismo , Locos de Características Quantitativas/genética , Fatores de Risco
6.
Circ Genom Precis Med ; 13(6): e002769, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33321069

RESUMO

BACKGROUND: Coronary artery disease (CAD) is accelerated in subjects with type 2 diabetes mellitus (T2D). METHODS: To test whether this reflects differential genetic influences on CAD risk in subjects with T2D, we performed a systematic assessment of genetic overlap between CAD and T2D in 66 643 subjects (27 708 with CAD and 24 259 with T2D). Variants showing apparent association with CAD in stratified analyses or evidence of interaction were evaluated in a further 117 787 subjects (16 694 with CAD and 11 537 with T2D). RESULTS: None of the previously characterized CAD loci was found to have specific effects on CAD in T2D individuals, and a genome-wide interaction analysis found no new variants for CAD that could be considered T2D specific. When we considered the overall genetic correlations between CAD and its risk factors, we found no substantial differences in these relationships by T2D background. CONCLUSIONS: This study found no evidence that the genetic architecture of CAD differs in those with T2D compared with those without T2D.


Assuntos
Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Estudos de Casos e Controles , Estudo de Associação Genômica Ampla , Humanos , Metanálise como Assunto , Polimorfismo Genético , Fatores de Risco
7.
Nat Genet ; 51(5): 804-814, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043758

RESUMO

Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.


Assuntos
Peso ao Nascer/genética , Adulto , Pressão Sanguínea/genética , Estatura/genética , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Feminino , Desenvolvimento Fetal/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Cardiopatias/etiologia , Cardiopatias/genética , Humanos , Recém-Nascido , Masculino , Herança Materna/genética , Troca Materno-Fetal/genética , Doenças Metabólicas/etiologia , Doenças Metabólicas/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Gravidez , Fatores de Risco
8.
Nat Genet ; 50(11): 1505-1513, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30297969

RESUMO

We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency <5%, 14 with estimated allelic odds ratio >2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).


Assuntos
Mapeamento Cromossômico/métodos , Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Genoma Humano/genética , Ilhotas Pancreáticas/metabolismo , Polimorfismo de Nucleotídeo Único , Índice de Massa Corporal , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/patologia , Feminino , Frequência do Gene , Loci Gênicos/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ilhotas Pancreáticas/patologia , Desequilíbrio de Ligação , Masculino , Metanálise como Assunto , Fatores Sexuais , População Branca/genética
9.
Nat Genet ; 50(4): 559-571, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29632382

RESUMO

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.


Assuntos
Diabetes Mellitus Tipo 2/genética , Alelos , Mapeamento Cromossômico/estatística & dados numéricos , Diabetes Mellitus Tipo 2/classificação , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Masculino , População Branca/genética , Sequenciamento do Exoma/estatística & dados numéricos
10.
Diabetes ; 67(7): 1414-1427, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29703844

RESUMO

Identification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 × 10-8) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/epidemiologia , Nefropatias Diabéticas/epidemiologia , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Falência Renal Crônica/complicações , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética
12.
Sci Data ; 4: 170179, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257133

RESUMO

To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Variação Genética , Humanos , População Branca
13.
Wellcome Open Res ; 2: 68, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28989980

RESUMO

Background: Observational studies have demonstrated that increased bone mineral density is associated with a higher risk of type 2 diabetes (T2D), but the relationship with risk of coronary heart disease (CHD) is less clear. Moreover, substantial uncertainty remains about the causal relevance of increased bone mineral density for T2D and CHD, which can be assessed by Mendelian randomisation studies.  Methods: We identified 235 independent single nucleotide polymorphisms (SNPs) associated at p<5×10 -8 with estimated heel bone mineral density (eBMD) in 116,501 individuals from the UK Biobank study, accounting for 13.9% of eBMD variance. For each eBMD-associated SNP, we extracted effect estimates from the largest available GWAS studies for T2D (DIAGRAM: n=26,676 T2D cases and 132,532 controls) and CHD (CARDIoGRAMplusC4D: n=60,801 CHD cases and 123,504 controls). A two-sample design using several Mendelian randomization approaches was used to investigate the causal relevance of eBMD for risk of T2D and CHD. In addition, we explored the relationship of eBMD, instrumented by the 235 SNPs, on 12 cardiovascular and metabolic risk factors. Finally, we conducted Mendelian randomization analysis in the reverse direction to investigate reverse causality. Results: Each one standard deviation increase in genetically instrumented eBMD (equivalent to 0.14 g/cm 2) was associated with an 8% higher risk of T2D (odds ratio [OR] 1.08; 95% confidence interval [CI]: 1.02 to 1.14; p=0.012) and 5% higher risk of CHD (OR 1.05; 95%CI: 1.00 to 1.10; p=0.034). Consistent results were obtained in sensitivity analyses using several different Mendelian randomization approaches. Equivalent increases in eBMD were also associated with lower plasma levels of HDL-cholesterol and increased insulin resistance. Mendelian randomization in the reverse direction using 94 T2D SNPs or 52 CHD SNPs showed no evidence of reverse causality with eBMD. Conclusions: These findings suggest a causal relationship between elevated bone mineral density with risks of both T2D and CHD.

14.
Diabetes ; 66(7): 2019-2032, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28341696

RESUMO

To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.


Assuntos
Diabetes Mellitus Tipo 2/genética , Jejum/metabolismo , Resistência à Insulina/genética , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , População Branca/genética , Negro ou Afro-Americano/genética , Alelos , Povo Asiático/genética , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/metabolismo , Finlândia , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Hispânico ou Latino/genética , Humanos , Razão de Chances
15.
J Am Soc Nephrol ; 28(2): 557-574, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27647854

RESUMO

Diabetes is the leading cause of ESRD. Despite evidence for a substantial heritability of diabetic kidney disease, efforts to identify genetic susceptibility variants have had limited success. We extended previous efforts in three dimensions, examining a more comprehensive set of genetic variants in larger numbers of subjects with type 1 diabetes characterized for a wider range of cross-sectional diabetic kidney disease phenotypes. In 2843 subjects, we estimated that the heritability of diabetic kidney disease was 35% (P=6.4×10-3). Genome-wide association analysis and replication in 12,540 individuals identified no single variants reaching stringent levels of significance and, despite excellent power, provided little independent confirmation of previously published associated variants. Whole-exome sequencing in 997 subjects failed to identify any large-effect coding alleles of lower frequency influencing the risk of diabetic kidney disease. However, sets of alleles increasing body mass index (P=2.2×10-5) and the risk of type 2 diabetes (P=6.1×10-4) associated with the risk of diabetic kidney disease. We also found genome-wide genetic correlation between diabetic kidney disease and failure at smoking cessation (P=1.1×10-4). Pathway analysis implicated ascorbate and aldarate metabolism (P=9.0×10-6), and pentose and glucuronate interconversions (P=3.0×10-6) in pathogenesis of diabetic kidney disease. These data provide further evidence for the role of genetic factors influencing diabetic kidney disease in those with type 1 diabetes and highlight some key pathways that may be responsible. Altogether these results reveal important biology behind the major cause of kidney disease.


Assuntos
Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/genética , Adolescente , Adulto , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Ann Rheum Dis ; 76(7): 1199-1206, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27974301

RESUMO

OBJECTIVE: Osteoarthritis (OA) has a strong genetic component but the success of previous genome-wide association studies (GWAS) has been restricted due to insufficient sample sizes and phenotype heterogeneity. Our aim was to examine the effect of clinically relevant endophenotyping according to site of maximal joint space narrowing (maxJSN) and bone remodelling response on GWAS signal detection in hip OA. METHODS: A stratified GWAS meta-analysis was conducted in 2118 radiographically defined hip OA cases and 6500 population-based controls. Signals were followed up by analysing differential expression of proximal genes for bone remodelling endophenotypes in 33 pairs of macroscopically intact and OA-affected cartilage. RESULTS: We report suggestive evidence (p<5×10-6) of association at 6 variants with OA endophenotypes that would have been missed by using presence of hip OA as the disease end point. For example, in the analysis of hip OA cases with superior maxJSN versus cases with non-superior maxJSN we detected association with a variant in the LRCH1 gene (rs754106, p=1.49×10-7, OR (95% CIs) 0.70 (0.61 to 0.80)). In the comparison of hypertrophic with non-hypertrophic OA the most significant variant was located between STT3B and GADL1 (rs6766414, p=3.13×10-6, OR (95% CIs) 1.45 (1.24 to 1.69)). Both of these associations were fully attenuated in non-stratified analyses of all hip OA cases versus population controls (p>0.05). STT3B was significantly upregulated in OA-affected versus intact cartilage, particularly in the analysis of hypertrophic and normotrophic compared with atrophic bone remodelling pattern (p=4.2×10-4). CONCLUSIONS: Our findings demonstrate that stratification of OA cases into more homogeneous endophenotypes can identify genes of potential functional importance otherwise obscured by disease heterogeneity.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Hexosiltransferases/genética , Articulação do Quadril/diagnóstico por imagem , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Osteoartrite do Quadril/diagnóstico por imagem , Atrofia , Remodelação Óssea/genética , Cartilagem Articular/metabolismo , Endofenótipos , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Articulação do Quadril/patologia , Humanos , Hipertrofia , Masculino , Osteoartrite do Quadril/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Radiografia , População Branca
17.
Nat Genet ; 48(10): 1151-1161, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27618447

RESUMO

High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to 192,763 individuals and used ∼155,063 samples for independent replication. We identified 30 new blood pressure- or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.


Assuntos
Pressão Sanguínea/genética , Variação Genética , Hipertensão/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos
18.
Nature ; 536(7614): 41-47, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27398621

RESUMO

The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Alelos , Análise Mutacional de DNA , Europa (Continente)/etnologia , Exoma , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Tamanho da Amostra
19.
Nat Genet ; 47(12): 1415-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26551672

RESUMO

We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.


Assuntos
Mapeamento Cromossômico , Diabetes Mellitus Tipo 2/genética , Loci Gênicos , Predisposição Genética para Doença , Fator 3-beta Nuclear de Hepatócito/genética , Polimorfismo de Nucleotídeo Único/genética , Receptor MT2 de Melatonina/genética , Sítios de Ligação , Estudos de Casos e Controles , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genômica , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Fígado/metabolismo , Fígado/patologia , Anotação de Sequência Molecular , Receptor MT2 de Melatonina/metabolismo
20.
PLoS Genet ; 11(1): e1004876, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25625282

RESUMO

Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.


Assuntos
Glicemia/genética , Diabetes Mellitus Tipo 2/genética , Glucose-6-Fosfatase/genética , Insulina/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Exoma/genética , Frequência do Gene , Estudo de Associação Genômica Ampla , Receptor do Peptídeo Semelhante ao Glucagon 1 , Índice Glicêmico/genética , Humanos , Insulina/genética , Polimorfismo de Nucleotídeo Único , Receptores de Glucagon/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA