Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biol Educ ; 23(1)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35496697

RESUMO

Although various resources exist for facilitating online laboratory courses, stitching together disparate elements from multiple sources may not be sufficient to meet the learning goals of a given course. For example, our Biology Project Lab course introduces students to an array of fundamental laboratory techniques, and the COVID-19 pandemic necessitated the development of virtual laboratory options for remote learners. We anticipated that the logic and application of the course material-a multiday sequence of connected experiments-would be lost if we combined prefabricated labs from a variety of sources. Moreover, we wanted students to familiarize themselves with our laboratory equipment, while providing interactive experiences rather than passive video demonstrations. Therefore, we used Storyline 360 to create a series of interactive lab modules to accommodate students who were remote or in quarantine. These online labs were integrated with our learning management system (LMS) and included exercises such as video demonstrations, short answer responses, image selection, drag-and-drop activities, and organizing procedural steps. Our simulations can be shared with instructors and customized for their own interactive labs, or instructors can build course-specific modules from scratch using the Storyline 360 platform. Although the simulations could not fully replicate the in-person learning experience, students appreciated being able to watch and participate in lab activities and recommended that the labs be retained as supplemental activities in future semesters. Storyline 360 thus offers an effective platform for developing virtual laboratory modules which may be widely adapted to suit the specific needs of a variety of laboratory courses.

3.
Nat Commun ; 5: 4278, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24985522

RESUMO

Marine viruses play crucial roles in shaping the dynamics of oceanic microbial communities and in the carbon cycle on Earth. Here we report a 4.7-Å structure of a cyanobacterial virus, Syn5, by electron cryo-microscopy and modelling. A Cα backbone trace of the major capsid protein (gp39) reveals a classic phage protein fold. In addition, two knob-like proteins protruding from the capsid surface are also observed. Using bioinformatics and structure analysis tools, these proteins are identified to correspond to gp55 and gp58 (each with two copies per asymmetric unit). The non 1:1 stoichiometric distribution of gp55/58 to gp39 breaks all expected local symmetries and leads to non-quasi-equivalence of the capsid subunits, suggesting a role in capsid stabilization. Such a structural arrangement has not yet been observed in any known virus structures.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/ultraestrutura , Podoviridae/ultraestrutura , Synechococcus/virologia , Sequência de Aminoácidos , Sequência de Bases , Dados de Sequência Molecular , Conformação Proteica
4.
J Virol ; 88(4): 2047-55, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307583

RESUMO

The marine cyanophage Syn5 can be propagated to a high titer in the laboratory on marine photosynthetic Synechococcus sp. strain WH8109. The purified particles carry a novel slender horn structure projecting from the vertex opposite the tail vertex. The genome of Syn5 includes a number of genes coding for novel proteins. Using immune-electron microscopy with gold-labeled antibodies, we show that two of these novel proteins, products of genes 53 and 54, are part of the horn structure. A third novel protein, the product of gene 58, is assembled onto the icosahedral capsid lattice. Characterization of radioactively labeled precursor procapsids by sucrose gradient centrifugation shows that there appear to be three classes of particles-procapsids, scaffold-deficient procapsids, and expanded capsids. These lack fully assembled horn appendages. The horn presumably assembles onto the virion just before or after DNA packaging. Antibodies raised to the recombinant novel Syn5 proteins did not interfere with phage infectivity, suggesting that the functions of these proteins are not directly involved in phage attachment or infection of the host WH8109. The horn structure may represent some adaption to the marine environment, whose function will require additional investigation.


Assuntos
Bacteriófagos/genética , Proteínas do Capsídeo/metabolismo , Synechococcus/virologia , Oceano Atlântico , Bacteriófagos/metabolismo , Bacteriófagos/ultraestrutura , Centrifugação com Gradiente de Concentração , Imuno-Histoquímica , Microscopia Imunoeletrônica
5.
Nature ; 502(7473): 707-10, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24107993

RESUMO

Cyanobacteria are photosynthetic organisms responsible for ∼25% of organic carbon fixation on the Earth. These bacteria began to convert solar energy and carbon dioxide into bioenergy and oxygen more than two billion years ago. Cyanophages, which infect these bacteria, have an important role in regulating the marine ecosystem by controlling cyanobacteria community organization and mediating lateral gene transfer. Here we visualize the maturation process of cyanophage Syn5 inside its host cell, Synechococcus, using Zernike phase contrast electron cryo-tomography (cryoET). This imaging modality yields dramatic enhancement of image contrast over conventional cryoET and thus facilitates the direct identification of subcellular components, including thylakoid membranes, carboxysomes and polyribosomes, as well as phages, inside the congested cytosol of the infected cell. By correlating the structural features and relative abundance of viral progeny within cells at different stages of infection, we identify distinct Syn5 assembly intermediates. Our results indicate that the procapsid releases scaffolding proteins and expands its volume at an early stage of genome packaging. Later in the assembly process, we detected full particles with a tail either with or without an additional horn. The morphogenetic pathway we describe here is highly conserved and was probably established long before that of double-stranded DNA viruses infecting more complex organisms.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Synechococcus/ultraestrutura , Synechococcus/virologia , Montagem de Vírus , Organismos Aquáticos/citologia , Organismos Aquáticos/ultraestrutura , Organismos Aquáticos/virologia , Modelos Biológicos , Synechococcus/citologia
6.
J Biol Chem ; 288(5): 3545-52, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23258537

RESUMO

A single subunit DNA-dependent RNA polymerase was identified and purified to apparent homogeneity from cyanophage Syn5 that infects the marine cyanobacteria Synechococcus. Syn5 is homologous to bacteriophage T7 that infects Escherichia coli. Using the purified enzyme its promoter has been identified by examining transcription of segments of Syn5 DNA and sequencing the 5'-termini of the transcripts. Only two Syn5 RNAP promoters, having the sequence 5'-ATTGGGCACCCGTAA-3', are found within the Syn5 genome. One promoter is located within the Syn5 RNA polymerase gene and the other is located close to the right genetic end of the genome. The purified enzyme and its promoter have enabled a determination of the requirements for transcription. Unlike the salt-sensitive bacteriophage T7 RNA polymerase, this marine RNA polymerase requires 160 mm potassium for maximal activity. The optimal temperature for Syn5 RNA polymerase is 24 °C, much lower than that for T7 RNA polymerase. Magnesium is required as a cofactor although some activity is observed with ferrous ions. Syn5 RNA polymerase is more efficient in utilizing low concentrations of ribonucleotides than T7 RNA polymerase.


Assuntos
Organismos Aquáticos/virologia , Bacteriófagos/enzimologia , RNA Polimerases Dirigidas por DNA/metabolismo , Synechococcus/virologia , Bacteriófagos/efeitos dos fármacos , Sequência de Bases , Coenzimas/metabolismo , DNA Viral/genética , RNA Polimerases Dirigidas por DNA/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Metais/farmacologia , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ribonucleotídeos/farmacologia , Sais/farmacologia , Temperatura , Transcrição Gênica/efeitos dos fármacos
7.
J Virol ; 85(5): 2406-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21177804

RESUMO

Syn5 is a marine cyanophage that is propagated on the marine photosynthetic cyanobacterial strain Synechococcus sp. WH8109 under laboratory conditions. Cryoelectron images of this double-stranded DNA (dsDNA) phage reveal an icosahedral capsid with short tail appendages and a single novel hornlike structure at the vertex opposite the tail. Despite the major impact of cyanophages on life in the oceans, there is limited information on cyanophage intracellular assembly processes within their photosynthetic hosts. The one-step growth curve of Syn5 demonstrated a short cycle with an eclipse period of ∼45 min, a latent phase of ∼60 min, and a burst size of 20 to 30 particles per cell at 28°C. SDS-PAGE and Western blot analysis of cell lysates at different times after infection showed the synthesis of major virion proteins and their increase as the infection progressed. The scaffolding protein of Syn5, absent from virions, was identified in the lysates and expressed from the cloned gene. It migrated anomalously on SDS-PAGE, similar to the phage T7 scaffolding protein. Particles lacking DNA but containing the coat and scaffolding proteins were purified from Syn5-infected cells using CsCl centrifugation followed by sucrose gradient centrifugation. Electron microscopic images of the purified particles showed shells lacking condensed DNA but filled with protein density, presumably scaffolding protein. These findings suggest that the cyanophages form infectious virions through the initial assembly of scaffolding-containing procapsids, similar to the assembly pathways for the enteric dsDNA bacteriophages. Since cyanobacteria predate the enteric bacteria, this procapsid-mediated assembly pathway may have originated with the cyanophages.


Assuntos
Capsídeo/metabolismo , Podoviridae/fisiologia , Synechococcus/virologia , Proteínas Estruturais Virais/metabolismo , Montagem de Vírus , Capsídeo/química , Capsídeo/ultraestrutura , Podoviridae/genética , Podoviridae/ultraestrutura , Proteínas Estruturais Virais/genética , Vírion/genética , Vírion/fisiologia , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA