Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Colloid Interface Sci ; 669: 430-443, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723532

RESUMO

The advancement of highly effective heterojunction photocatalysts with improved charge separation and transfer has become a crucial scientific perspective for utilizing solar energy. In this study, we developed the S-scheme heterostructure by depositing N-doped CeO2-δ (NC) nanoparticles onto two-dimensional ZnIn2S4 (ZIS) nanosheets via hydrolysis strategy for significantly enhanced photocatalytic hydrogen evolution reaction. The optimal H2 generation rate of âˆ¼ 798 µmol g-1 h-1 was achieved for NC-3@ZIS under solar light irradiation, which is about 18 and 2 times higher than those of pristine CeO2 (∼44 µmol g-1 h-1) and ZIS (∼358 µmol g-1 h-1), respectively. The photogenerated electrons from NC interact with the photogenerated holes of ZIS driven by an internal electric field, confirmed by In-situ KPFM, DFT calculation, and XPS results. According to EPR and photoelectrochemical measurements, NC-3@ZIS composite shows dramatically high separation efficiency of photogenerated charge carriers. This study provides a new approach for developing non-noble metal S-scheme heterojunctions with enhanced photocatalytic hydrogen evolution.

2.
Heliyon ; 10(9): e29397, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694025

RESUMO

Although lithium-ion batteries (LIBs) are extensively used as secondary storage energy devices, they also pose a significant fire and explosion hazard. Subsequently, thermal stability studies for LiPF6- and LiFSI-type electrolytes have been conducted extensively. However, the thermal characteristics of these electrolytes with thermally stable additives in a full cell assembly have yet to be explored. This study presents a comprehensive accelerating rate calorimetry (ARC) study. First, 1.2-Ah cells were prepared using a control commercial LiPF6 electrolyte and LiFSI with a specific succinonitrile additive and ethyl-methyl carbonate as a thermally stable electrolyte additive. The kinetic parameters involved in heat generation and their effects on the thermal properties of the ARC module were analyzed from the heat-wait-seek (HWS), self-heating (SH), and thermal runaway (TR) stages. The results indicate that the addition of a succinonitrile additive to the LiFSI electrolyte lowers the decomposition temperatures of the solid electrolyte interface (SEI) owing to polymerization with Li at the anode, while simultaneously increasing the activation energy of reaction temperatures at SEI between the separator and the electrolyte. The maximum thermal-runaway temperature decreased from 417 °C (ΔH = 5.26 kJ) (LiPF6) to 285 °C (ΔH = 2.068 kJ) (LiFSI + succinonitrile). This study provides key insights to the thermal characteristics of LiPF6 and LiFSI during the self-heating and thermal runaway stages and indicates a practical method for achieving thermally stable LIBs.

3.
ChemMedChem ; : e202400015, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38638026

RESUMO

In this study, a series of isatin-chalcone linked triazoles were synthesized using Cu-promoted Azide-Alkyne Cycloaddition (CuAAC) reaction and evaluated for their cytotoxicity against various cancer cell lines. The most potent compound displayed approximately 2.5 times greater activity compared to both reference compounds against ovarian cancer cell lines. These findings were supported by caspase-mediated apoptosis and molecular docking analyses. Docking revealed comparable VEGFR-2 affinities for 5 b and 5-FU but highlighted stronger interaction of 5 b with EGFR, evident from its lower docking score. Overall, these results signify the notable anti-proliferative potential of most synthesized hybrids, notably emphasizing the efficacy of compound 5 b in suppressing cancer cell growth.

4.
Chem Biol Drug Des ; 103(3): e14502, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38453260

RESUMO

We designed and synthesized thirty novel quinoxaline aryl ethers as anticancer agents, and the structures of final compounds were confirmed with various analytical techniques like Mass, 1 H NMR, 13 C NMR, FTIR, and elemental analyses. The compounds were tested against three cancer cell lines: colon cancer (HCT-116), breast cancer (MDA-MB-231), prostate cancer (DU-145), and one normal cell line: human embryonic kidney cell line (HEK-293). The obtained results indicate that two compounds, FQ and MQ, with IC50 values < 16 µM, were the most active compounds. Molecular docking studies revealed the binding of FQ and MQ molecules in the active site of the c-Met kinase (PDB ID: 3F66, 1.40 Å). Furthermore, QikProp ADME prediction and the MDS analysis preserved those critical docking data of both compounds, FQ and MQ. Western blotting was used to confirm the impact of the compounds FQ and MQ on the inhibition of the c-Met kinase receptor. The apoptosis assays were performed to investigate the mechanism of cell death for the most active compounds, FQ and MQ. The Annexin V/7-AAD assay indicated apoptosis in MDA-MB-231 cells treated with FQ and MQ, with FQ (21.4%) showing a higher efficacy in killing MDA-MB-231 cells than MQ (14.25%). The Caspase 3/7 7-AAD assay further supported these findings, revealing higher percentages of apoptotic cells for FQ-treated MDA-MB-231 cells (41.8%). The results obtained from the apoptosis assay conclude that FQ exhibits better anticancer activity against MDA-MB-231 cells than MQ.


Assuntos
Antineoplásicos , Éteres , Humanos , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Quinoxalinas/farmacologia , Células HEK293 , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Apoptose , Estrutura Molecular , Relação Estrutura-Atividade
5.
Biol Trace Elem Res ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536638

RESUMO

The exposure of fish to heavy metals can significantly impact physiological processes and potentially lead to adverse health effects. This study assesses the effects of exposure to Cd and Pb sublethal concentrations in water on Wallagu attu. A total of 48 fish with an average body weight of 145.5 ± 26 g were distributed among three groups (control, Cd-treated, and Pb-treated) within 60 L fiberglass tanks. They were exposed to 30% sublethal concentrations of Cd and Pb for durations of 1, 15, and 30 days. Following this exposure, an assessment was conducted on metal bioaccumulation and hemato-biochemical responses. Results revealed a significantly (P < 0.05) higher concentration of heavy metals in the fish tissues of metals exposed groups than in the control. The concentration of Cd and Pb increases in fish tissues (kidney > gills > intestine) with exposure time. In most cases, the Pb-exposed group exhibited significantly (P < 0.05) higher concentrations of Pb in different tissues than the Cd-treated group. With extended exposure time, the activities of CAT and SOD show a significant decrease in both Cd and Pb-treated groups. However, the reduction in activities was more pronounced in the Cd-exposed group. On 15 and 30 days, the levels of red blood cells (RBC), hemoglobin (HB), hematocrit (HCT), and total protein (TP) decrease in groups exposed to Cd and Pb. The cortisol and glucose levels exhibit a more noticeable (P < 0.05) increase with prolonged exposure to Cd and Pb than the control group. On day 30, the survival rate decreased more in the Pb-exposed group. The findings of this study indicate that exposure to sublethal doses of Cd and Pb induces stress in Wallagu attu, resulting in rapid changes in specific hemato-biochemical parameters.

6.
Pharmaceutics ; 16(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38399326

RESUMO

Currently, cancer remains a global health problem. Despite the existence of several treatments, including chemotherapy, immunotherapy, and radiation therapy, the survival rate for most cancer patients, particularly those with metastasis, remains unsatisfactory. Thus, there is a continuous need to develop novel, effective therapies. In this work, 22 novel molecules containing selenium are reported, including seven Se-acylisoselenoureas synthesized from aliphatic carbodiimides as well as acylselenoureas with the same carbo- and heterocycles and aliphatic amines. After an initial screening at two doses (50 and 10 µM) in MDA-MB-231 (breast), HTB-54 (lung), DU-145 (prostate), and HCT-116 (colon) tumor cell lines, the ten most active compounds were identified. Additionally, these ten hits were also submitted to the DTP program of the NCI to study their cytotoxicity in a panel of 60 cancer cell lines. Compound 4 was identified as the most potent antiproliferative compound. The results obtained showed that compound 4 presented IC50 values lower than 10 µM in the cancer cell lines, although it was not the most selective one. Furthermore, compound 4 was found to inhibit cell growth and cause cell death by inducing apoptosis partially via ROS production. Overall, our results suggest that compound 4 could be a potential chemotherapeutic drug for different types of cancer.

7.
Adv Mater ; 36(19): e2313197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38300155

RESUMO

Covalent organic frameworks (COFs) are promising electrocatalyst platforms owing to their designability, porosity, and stability. Recently, COFs with various chemical structures are developed as efficient electrochemical CO2 reduction catalysts. However, controlling the morphology of COF catalysts remains a challenge, which can limit their electrocatalytic performance. Especially, while porphyrin COFs show promising catalytic properties, their particle size is mostly large and uncontrolled because of the severe aggregation of crystallites. In this work, a new synthetic methodology for rationally downsized COF catalyst particles is reported, where a tritylated amine is employed as a novel protected precursor for COF synthesis. Trityl protection provides high solubility to a porphyrin precursor, while its deprotection proceeds in situ under typical COF synthesis conditions. Subsequent homogeneous nucleation and colloidal growth yield smaller COF particles than a conventional synthesis, owing to suppressed crystallite aggregation. The downsized COF particles exhibit superior catalytic performance in electrochemical CO2 reduction, with higher CO production rate and faradaic efficiency compared to conventional COF particles. The improved performance is attributed to the higher contact area with a conductive agent. This study reveals particle size as an important factor for the evaluation of COF electrocatalysts and provides a strategy to control it.

8.
Bioorg Chem ; 142: 106953, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37925887

RESUMO

Herein, a series of isatin tethered indolo[2,3-b]quinoxaline hybrids was synthesized by considering the pharmacophoric features of known DNA intercalators and topoisomerase II inhibitors. The anti-proliferative properties of the synthesized compounds were evaluated against ovarian cancer cell lines (SKOV-3 and Hey A8). Four of the compounds exhibited promising anti-proliferative activities, with one of them being 10-fold more potent than cisplatin against drug-resistant Hey A8 cells. Further investigations were carried out to determine the DNA intercalating affinities of the most active compounds as potential mechanisms for their anti-proliferative activities. ADMET in silico studies were performed to assess the physicochemical, pharmacokinetics, and toxicity parameters of active compounds. This study, to the best of our knowledge, is the first report on the potential of isatin-indoloquinoxaline hybrids as structural blueprints for the development of new DNA intercalators. Additionally, it explores their potential to circumvent platinum-based resistance in ovarian cancer.


Assuntos
Antineoplásicos , Isatina , Neoplasias Ovarianas , Humanos , Feminino , Isatina/farmacologia , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/química , Linhagem Celular Tumoral , Antineoplásicos/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , DNA/metabolismo , Relação Estrutura-Atividade
10.
Antioxidants (Basel) ; 12(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759969

RESUMO

The introduction of selenium (Se) into organic scaffolds has been demonstrated to be a promising framework in the field of medicinal chemistry. A novel design of nonsteroidal anti-inflammatory drug (NSAID) derivatives based on a bioisosteric replacement via the incorporation of Se as diacyl diselenide is reported. The antioxidant activity was assessed using the DPPH radical scavenging assay. The new Se-NSAID derivatives bearing this unique combination showed antioxidant activity in a time- and dose-dependent manner, and also displayed different antiproliferative profiles in a panel of eight cancer cell lines as determined by the MTT assay. Ibuprofen derivative 5 was not only the most antioxidant agent, but also selectively induced toxicity in all the cancer cell lines tested (IC50 < 10 µM) while sparing nonmalignant cells, and induced apoptosis partially without enhancing the caspase 3/7 activity. Furthermore, NSAID derivative 5 significantly suppressed tumor growth in a subcutaneous colon cancer xenograft mouse model (10 mg/kg, TGI = 72%, and T/C = 38%) without exhibiting any apparent toxicity. To our knowledge, this work constitutes the first report on in vitro and in vivo anticancer activity of an unprecedented Se-NSAID hybrid derivative and its rational use for developing precursors for bioisosteric selenocompounds with appealing therapeutic applications.

11.
RSC Adv ; 13(41): 28434-28443, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37771919

RESUMO

The manuscript focuses on a highly stereo-/regioselective approach for synthesizing a diverse array of substituted-3-hydroxy-2-oxindoles. The synthesized compounds were subsequently subjected to anti-proliferative assessment against various cell lines, including colorectal carcinoma, ovarian cancer, and human metastatic melanoma cancer. The structural characterization of the synthesized scaffolds was unambiguously confirmed using X-ray diffraction analysis. Among the synthesized compounds, one compound demonstrated exceptional potency within the series. It exhibited 1.2, 2.12, and 1.55 times greater potency than cisplatin against the HCT116, OVCAR10, and 1205Lu cell lines, respectively. These results were further supported by in vitro caspase-mediated apoptosis studies. Molecular docking studies of these compounds on the target VEGFR2 protein revealed their binding capability.

12.
Life Sci ; 332: 122087, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714373

RESUMO

Diabetic Mellitus has been characterized as the most prevalent disease throughout the globe associated with the serious morbidity and mortality of vital organs. Cardiomyopathy is the major leading complication of diabetes and within this, myocardial dysfunction or failure is the leading cause of the emergency hospital admission. The review is aimed to comprehend the perspectives associated with diabetes-induced cardiovascular complications. The data was collected from several electronic databases such as Google Scholar, Science Direct, ACS publication, PubMed, Springer, etc. using the keywords such as diabetes and its associated complication, the prevalence of diabetes, the anatomical and physiological mechanism of diabetes-induced cardiomyopathy, the molecular mechanism of diabetes-induced cardiomyopathy, oxidative stress, and inflammatory stress, etc. The collected scientific data was screened by different experts based on the inclusion and exclusion criteria of the study. This review findings revealed that diabetes is associated with inefficient substrate utilization, inability to increase glucose metabolism and advanced glycation end products within the diabetic heart resulting in mitochondrial uncoupling, glucotoxicity, lipotoxicity, and initially subclinical cardiac dysfunction and finally in overt heart failure. Furthermore, several factors such as hypertension, overexpression of renin angiotensin system, hypertrophic obesity, etc. have been seen as majorly associated with cardiomyopathy. The molecular examination showed biochemical disability and generation of the varieties of free radicals and inflammatory cytokines and becomes are the substantial causes of cardiomyopathy. This review provides a better understanding of the involved pathophysiology and offers an open platform for discussing and targeting therapy in alleviating diabetes-induced early heart failure or cardiomyopathy.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Humanos , Cardiomiopatias Diabéticas/metabolismo , Insuficiência Cardíaca/complicações , Estresse Oxidativo/fisiologia
13.
Antioxidants (Basel) ; 12(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37507871

RESUMO

Oxidative stress surrounding cancer cells provides them with certain growth and survival advantages necessary for disease progression. In this context, Se-containing molecules have gained attention due to their anticancer and antioxidant activity. In our previous work, we synthesized a library of 39 selenoesters containing functional groups commonly present in natural products (NP), which showed potent anticancer activity, but did not demonstrate high radical scavenger activity. Thus, 20 novel Se derivatives resembling NP have been synthesized presenting acylselenourea functionality in their structures. Radical scavenger activity was tested using DPPH assay and in vitro protective effects against ROS-induced cell death caused by H2O2. Additionally, antiproliferative activity was evaluated in prostate, colon, lung, and breast cancer cell lines, along with their ability to induce apoptosis. Compounds 1.I and 5.I showed potent cytotoxicity against the tested cancer cell lines, along with high selectivity indexes and induction of caspase-mediated apoptosis. These compounds exhibited potent and concentration-dependent radical scavenging activity achieving DPPH inhibition similar to ascorbic acid and trolox. To conclude, we have demonstrated that the introduction of Se in the form of acylselenourea into small molecules provides strong radical scavengers in vitro and antiproliferative activity, which may lead to the development of promising dual compounds.

14.
J Pak Med Assoc ; 73(4): 925-928, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37052018

RESUMO

Superior mesenteric artery (SMA) aneurysm is a rare disease, especially if it is mycotic (infective) in origin. It is difficult to detect the problem during its initial natural course and usually presents in late phase due to its complications such as rupture, dissection, haemorrhage, and mesenteric ischaemia. Initially, the patient present with non-specific symptoms like vague colicky abdominal pain, nausea, vomiting, discomfort, malaise, and low-grade fever but prompt workup and intervention can lead to definitive diagnosis and uneventful outcome. This report describes the case of a 60-year-old male patient who presented with non-specific abdominal symptoms and, on workup, was diagnosed with superior mesenteric artery mycotic aneurysm. It was successfully treated surgically by resection of aneurysm and reconstruction of superior mesenteric artery by inter-positional Polytetrafluoroethylene (PTFE) synthetic vascular graft.


Assuntos
Aneurisma Infectado , Gastroenteropatias , Isquemia Mesentérica , Masculino , Humanos , Pessoa de Meia-Idade , Aneurisma Infectado/diagnóstico por imagem , Aneurisma Infectado/cirurgia , Artéria Mesentérica Superior/diagnóstico por imagem , Artéria Mesentérica Superior/cirurgia , Abdome
15.
J Public Health (Oxf) ; 45(2): 488-490, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35257179

RESUMO

BACKGROUND: To establish the risk of catching COVID-19 as urology emergency inpatient and assess patients' fears and attitudes towards seeking help. METHODS: A single-centre retrospective study of urological emergency admissions was conducted over a 10-week period in 2019 and compared to same period of 2020 pandemic. Also, a telephone survey was performed based on a COVID-19 fear questionnaire. RESULTS: In-hospital, infection rate was 0.82% during or within 28 days of discharge with no related mortality. The majority of patients were afraid to visit A&E during the pandemic with less being afraid to visit their GPs; 64% were reluctant to seek medical input by trying self-treatment; 56% admitted intentional delay to visit the hospital. Additionally, 56% considered risk of getting COVID-19 was higher rather than leaving their condition untreated. Interestingly, the vast majority (82%) stated that they would not change approach regarding hospital visits if the same situation occurred. CONCLUSIONS: The risk of contracting COVID 19 while a urology in patient in a COVID-19 epicentre was very low with no COVID-19-related mortality. Our data support that patients should be encouraged to attend rather than stay at home during future surges in the pandemic to prevent further non-COVID-19-related harm.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Estudos Retrospectivos , Hospitais , Medo , Reino Unido/epidemiologia
16.
Turk J Chem ; 47(6): 1334-1345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38544703

RESUMO

In the present work novel conductive organic-inorganic nanocomposites were produced by grafting of pyrrole monomer onto silanized Laponite RD utilizing emulsion graft polymerization. Influence of some important factors like concentration of monomer, initiator and surfactant were investigated on grafting efficiency. Grafting of polypyrrole chains onto modified Laponite RD was verified by Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscope (SEM) revealed the spherical particles of nanocomposite with average diameter of 271.5 nm. XRD pattern showed that molecular framework of pure polypyrrole almost remains same in nanocomposite. Surface area and pore volume of Laponite RD, measured by Brunauer-Emmett-Teller (BET) analysis, was also altered indicating effective grafting of polypyrrole chains onto modified substrate. Maximum grafting efficiency (%), determined gravimetrically, was 87.3% at monomer, initiator, and surfactant concentrations of 1.50, 1.00, and 0.50% respectively. Prepared nanocomposites with grafting efficiency of 87.3% have displayed maximum electrical conductivity of 0.23 × 10-2 Scm-1. These nanocomposites can be used for manifold applications like biomedical and energy storage devices.

17.
Arch Biochem Biophys ; 732: 109466, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403759

RESUMO

The ability to develop novel medications based on nanoscale complexes has greatly enhanced the capabilities of current pharmaceuticals and has made multidimensional research of these complexes extremely relevant in recent years. Selenium nanoparticles (SeNPs) constitute one such example which in general, could be created by biological, chemical, and physical techniques. Biogenic SeNPs show improved compatibility with human organs and tissues. While sufficient levels of selenium (Se) are crucial for triggering immunity, they also play a role in controlling exaggerated immunological responses and persistent inflammation. More significantly, SeNPs can activate the immune systems, both innate and adaptive, in the tumor microenvironment, which results in an immunological response that fights various diseases caused by chronic inflammation. In this article, we discuss the functions of Se and SeNPs in controlling inflammation with particular emphasis given to their role in combating inflammation in different diseases. Finally, even though Se status exhibits considerable promise as a reliable indicator of autoimmune and inflammatory diseases, novel functionalized SeNPs may likely offer a more effective and reliable tool in both disease prevention and treatment.


Assuntos
Nanopartículas , Selênio , Humanos , Selênio/uso terapêutico , Inflamação , Microambiente Tumoral , Preparações Farmacêuticas
18.
Eur J Med Chem ; 244: 114839, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36257283

RESUMO

A total of twenty-five novel carboxylic acid, methylester, methylamide or cyano nonsteroidal anti-inflammatory drug (NSAID) derivatives incorporating Se in the chemical form of selenoester were reported. Twenty Se-NSAID analogs exhibited an increase in cytotoxic potency compared with parent NSAID scaffolds (aspirin, salicylic acid, naproxen, indomethacin and ketoprofen). Top five analogs were selected to further study their cytotoxicity in a larger panel of cancer cells and were also submitted to the DTP program of the NCI's panel of 60 cancer cell lines. Compounds 4a and 4d stood out with IC50 values below 10 µM in several cancer cells along with a selectivity index higher than 5 in breast cancer cells. Remarkably, analog 4d was found to inhibit cell growth notably in two breast cancer cell lines by inducing apoptosis, and to be metabolized to release the parent NSAID along with the Se fragment. Taken together, our results show that Se-NSAID analog 4d could be a potential chemotherapeutic drug for breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Indometacina , Neoplasias da Mama/tratamento farmacológico , Anti-Inflamatórios não Esteroides/química , Naproxeno/farmacologia , Aspirina/química , Antineoplásicos/química
19.
Int J Biol Macromol ; 222(Pt A): 750-758, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36167100

RESUMO

This study explores a biopolymer-based composite system for metal decontamination of water using copper {Cu (II)} as a model pollutant. Novel composite beads of chitosan and amidoxime grafted graphene oxide (AOGO) were successfully prepared and used for the Cu (II) removal from aqueous solutions. For this purpose, acrylonitrile was first polymerized onto a gamma-irradiated and silanized graphene oxide substrate. The nitrile groups of polyacrylonitrile grafted graphene oxide (GO-g-PAN) were then chemically modified into amidoxime groups to form AOGO nanohybrids. These nanohybrids were mixed with a blend of chitosan (CS) and polyvinyl alcohol (PVA) and crosslinked using tetraethylorthosilicate (TEOS) to form composite CP/AOGO beads. Fourier transform infrared spectroscopy (FTIR) was used to study the structural changes at each step during the formation of composite beads. Scanning electron microscopic (SEM) analysis demonstrated that the beads had a well-developed spherical structure. The adsorption of Cu (II) onto CP/AOGO composite beads was studied under different conditions (initial concentration, pH, and contact time). The results revealed the potential of composite beads in copper removal from aqueous solutions.


Assuntos
Quitosana , Poluentes Químicos da Água , Quitosana/química , Cobre/química , Cinética , Adsorção , Água/química , Poluentes Químicos da Água/química , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
20.
Chem Biol Interact ; 365: 110071, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35921948

RESUMO

A series of seleno-biotin analogs were synthesized and their anticancer activity and mode of action were assessed using ovarian cancer cells. Compound 2, out of the other analogs, in direct comparison to biotin alone, more effectively reduced the cell viability and induced apoptosis in ovarian cancer cell lines in a dose dependent manner as demonstrated by the cell viability assay, trypan blue dye exclusion assay, Annexin V/7-AAD, and Caspase 3/7 apoptosis assays. Furthermore, compound 2 showed efficacy better than 5-fluorouracil (5-FU) and similar to cisplatin, in vitro; notably it was more cytotoxic to drug-resistant Hey A8 cells than cisplatin. The cytotoxicity of compound 2 was primarily mediated by reactive oxygen species (ROS) as demonstrated by DCFDA based ROS estimation. Biotin receptors (BR) saturation and the use of a BR negative cell line showed a significant decline in the cytotoxic ativity of the compound 2, confirming that its activity is BR-mediated. These experiments demonstrated that selenium modified biotin which contains an ester linked redox cycling selenocyanate group has the potential for human therapeutic applications against ovarian and other cancers over-expressing BR.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Fatores de Crescimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA