Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(6): 1341-1348.e3, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38460511

RESUMO

Restoration is increasingly seen as a necessary tool to reverse ecological decline across terrestrial and marine ecosystems.1,2 Considering the unprecedented loss of coral cover and associated reef ecosystem services, active coral restoration is gaining traction in local management strategies and has recently seen major increases in scale. However, the extent to which coral restoration may restore key reef functions is poorly understood.3,4 Carbonate budgets, defined as the balance between calcium carbonate production and erosion, influence a reef's ability to provide important geo-ecological functions including structural complexity, reef framework production, and vertical accretion.5 Here we present the first assessment of reef carbonate budget trajectories at restoration sites. The study was conducted at one of the world's largest coral restoration programs, which transplants healthy coral fragments onto hexagonal metal frames to consolidate degraded rubble fields.6 Within 4 years, fast coral growth supports a rapid recovery of coral cover (from 17% ± 2% to 56% ± 4%), substrate rugosity (from 1.3 ± 0.1 to 1.7 ± 0.1) and carbonate production (from 7.2 ± 1.6 to 20.7 ± 2.2 kg m-2 yr-1). Four years after coral transplantation, net carbonate budgets have tripled and are indistinguishable from healthy control sites (19.1 ± 3.1 and 18.7 ± 2.2 kg m-2 yr-1, respectively). However, taxa-level contributions to carbonate production differ between restored and healthy reefs due to the preferential use of branching corals for transplantation. While longer observation times are necessary to observe any self-organization ability of restored reefs (natural recruitment, resilience to thermal stress), we demonstrate the potential of large-scale, well-managed coral restoration projects to recover important ecosystem functions within only 4 years.


Assuntos
Antozoários , Animais , Antozoários/metabolismo , Ecossistema , Recifes de Corais , Carbonatos/metabolismo , Carbonato de Cálcio
3.
Sci Total Environ ; 705: 135908, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31841911

RESUMO

As oceans continue to warm under climate change, understanding the differential growth responses of corals is increasingly important. Scleractinian corals exhibit a broad range of life-history strategies, yet few studies have explored interspecific variation in long-term growth rates under a changing climate. Here we studied growth records of two coral species with different growth forms, namely branching Isopora palifera and massive Porites spp. at an offshore reef (Myrmidon Reef) of the central Great Barrier Reef (GBR), Australia. Skeletal growth chronologies were constructed using a combination of X-radiographs, gamma densitometry, and trace element (Sr/Ca) analysis. General additive mixed-effect models (GAMMs) revealed that skeletal density of I. palifera declined linearly and significantly at a rate of 1.2% yr-1 between 2002 and 2012. Calcification was stable between 2002 and 2009, yet declined significantly at a rate of 12% yr-1 between 2009 and 2012 following anomalously high sea surface temperatures (SST). Skeletal density of massive Porites exhibited a significant non-linear response over the 11-year study period (2002-2012) in that density was temporarily reduced during the 2009-2010 anomalously hot years, while linear extension and calcification showed no significant trends. Linear extension, density and calcification rates of I. palifera increased to maximum growth of 26.7-26.9 °C, beyond which they declined. In contrast, calcification and linear extension of Porites exhibited no response to SST, but exhibited a significant linear decline in skeletal density with increasing SST. Our results reveal significant differences in coral growth patterns among coral growth forms, and highlight both the resistant nature of massive Porites and sensitivity of branching I. palifera. Future research should target a broad range of coral taxa within similar environments to provide a community-level response of ocean warming on coral reef communities.


Assuntos
Antozoários , Recifes de Corais , Animais , Austrália , Calcificação Fisiológica , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA