Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 420, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483663

RESUMO

BACKGROUND: Although extensive efforts have been made to improve the treatment of colorectal cancer (CRC) patients, the prognosis for these patients remains poor. A wide range of anti-cancer agents has been applied to ameliorate the clinical management of CRC patients; however, drug resistance develops in nearly all patients. Based on the prominent role of PI3K/AKT signaling in the development of CRC and current interest in the application of PI3K inhibitors, we aimed to disclose the exact mechanism underlying the efficacy of BKM120, a well-known pan-class I PI3K inhibitor, in CRC-derived SW480 cells. MATERIALS AND METHODS: The effects of BKM120 on SW480 cells were studied using MTT assay, cell cycle assay, Annexin V/PI apoptosis tests, and scratch assay. In the next step, qRT-PCR was used to investigate the underlying molecular mechanisms by which the PI3K inhibitor could suppress the survival of SW480 cells. RESULT: The results of the MTT assay showed that BKM120 could decrease the metabolic activity of SW480 cells in a concentration and time-dependent manner. Investigating the exact mechanism of BKM120 showed that this PI3K inhibitor induces its anti-survival effects through a G2/M cell cycle arrest and apoptosis-mediated cell death. Moreover, the scratch assay demonstrated that PI3K inhibition led to the inhibition of cancer invasion and inhibition of PI3K/AKT signaling remarkably sensitized SW480 cells to Cisplatin. CONCLUSION: Based on our results, inhibition of PI3K/AKT signaling can be a promising approach, either as a single modality or in combination with Cisplatin. However, further clinical studies should be performed to improve our understanding.


Assuntos
Aminopiridinas , Cisplatino , Neoplasias Colorretais , Morfolinas , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico
2.
Cell Commun Signal ; 21(1): 143, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328876

RESUMO

In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Transição Epitelial-Mesenquimal
3.
J Diabetes Res ; 2023: 2587104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911496

RESUMO

Most medical investigations have found a reduced blood level of miR-146a in type 2 diabetes (T2D) patients, suggesting an important role for miR-146a (microRNA-146a) in the etiology of diabetes mellitus (DM) and its consequences. Furthermore, injection of miR-146a mimic has been confirmed to alleviate diabetes mellitus in diabetic animal models. In this line, deregulation of miR-146a expression has been linked to the progression of nephropathy, neuropathy, wound healing, olfactory dysfunction, cardiovascular disorders, and retinopathy in diabetic patients. In this review, besides a comprehensive review of the function of miR-146a in DM, we discussed new findings on type 1 (T1MD) and type 2 (T2DM) diabetes mellitus, highlighting the discrepancies between clinical and preclinical investigations and elucidating the biological pathways regulated through miR-146a in DM-affected tissues.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , MicroRNAs , Animais , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , MicroRNAs/metabolismo , Humanos
4.
Adv Pharm Bull ; 12(2): 206-216, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35620342

RESUMO

After severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) outbreaks, coronavirus disease 2019 (COVID-19) is the third coronavirus epidemic that soon turned into a pandemic. This virus causes acute respiratory syndrome in infected people. The mortality rate of SARS-CoV-2 infection will probably rise unless efficient treatments or vaccines are developed. The global funding and medical communities have started performing more than five hundred clinical examinations on a broad spectrum of repurposed drugs to acquire effective treatments. Besides, other novel treatment approaches have also recently emerged, including cellular host-directed therapies. They counteract the unwanted responses of the host immune system that led to the severe pathogenesis of SARS-CoV-2. This brief review focuses on mesenchymal stem cell (MSC) principles in treating the COVID-19. The US clinical trials database and the world health organization database for clinical trials have reported 82 clinical trials (altogether) exploring the effects of MSCs in COVID-19 treatment. MSCs also had better be tried for treating other pathogens worldwide. MSC treatment may have the potential to end the high mortality rate of COVID-19. Besides, it also limits the long-term inability of survivors.

5.
Sci Rep ; 12(1): 8676, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606506

RESUMO

Acanthamoeba polyphaga mimivirus (APMV), a species of amoeba-infecting giant viruses, has recently emerged as human respiratory pathogens. This study aimed to evaluate the presence of Mimivirus in respiratory samples, collected from tuberculosis (TB)-suspected patients. The study was performed on 10,166 clinical respiratory samples from April 2013 to December 2017. Mimivirus was detected using a suicide nested-polymerase chain reaction (PCR) and real-time PCR methods. Of 10,166 TB-suspected patients, 4 (0.04%) were positive for Mimivirus, including Mimivirus-53, Mimivirus-186, Mimivirus-1291, and Mimivirus-1922. Three out of four patients, hospitalized in the intensive care unit (ICU), were mechanically ventilated. All patients had an underlying disease, and the virus was detected in both sputum and bronchoalveolar lavage samples. In conclusion, Mimivirus was isolated from TB-suspected patients in a comprehensive study. The present results, similar to previous reports, showed that Mimiviruses could be related to pneumonia. Further studies in different parts of the world are needed to additional investigate the clinical importance of Mimivirus infection.


Assuntos
Amoeba , Vírus Gigantes , Mimiviridae , Tuberculose , Vírus de DNA , Humanos , Mimiviridae/genética , Tuberculose/diagnóstico
6.
Transl Oncol ; 18: 101364, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35168143

RESUMO

Lung cancer is the leading cause of cancer-related mortality worldwide. Although the PI3K/Akt/mTOR signaling pathway has recently been considered as one of the most altered molecular pathways in this malignancy, few articles reviewed the task. In this review, we aim to summarize the original data obtained from international research laboratories on the oncogenic alterations in each component of the PI3K/Akt/mTOR pathway in lung cancer. This review also responds to questions on how aberrant activation in this axis contributes to uncontrolled growth, drug resistance, sustained angiogenesis, as well as tissue invasion and metastatic spread. Besides, we provide a special focus on pharmacologic inhibitors of the PI3K/Akt/mTOR axis, either as monotherapy or in a combined-modal strategy, in the context of lung cancer. Despite promising outcomes achieved by using these agents, however, the presence of drug resistance as well as treatment-related adverse events is the other side of the coin. The last section allocates a general overview of the challenges associated with the inhibitors of the PI3K pathway in lung cancer patients. Finally, we comment on the future research aspects, especially in which nano-based drug delivery strategies might increase the efficacy of the therapy in this malignancy.

7.
Sci Rep ; 12(1): 2990, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194111

RESUMO

Colorectal cancer (CRC) is one of the most prevalent cancers worldwide, which after breast, lung and, prostate cancers, is the fourth prevalent cancer in the United States. Long non-coding RNAs (lncRNAs) have an essential role in the pathogenesis of CRC. Therefore, bioinformatics studies on lncRNAs and their target genes have potential importance as novel biomarkers. In the current study, publicly available microarray gene expression data of colorectal cancer (GSE106582) was analyzed with the Limma, Geoquery, Biobase package. Afterward, identified differentially expressed lncRNAs and their target genes were inserted into Weighted correlation network analysis (WGCNA) to obtain modules and hub genes. A total of nine differentially expressed lncRNAs (LINC01018, ITCH-IT, ITPK1-AS1, FOXP1-IT1, FAM238B, PAXIP1-AS1, ATP2B1-AS1, MIR29B2CHG, and SNHG32) were identified using microarray data analysis. The WGCNA has identified several hub genes for black (LMOD3, CDKN2AIPNL, EXO5, ZNF69, BMS1P5, METTL21A, IL17RD, MIGA1, CEP19, FKBP14), blue (CLCA1, GUCA2A, UGT2B17, DSC2, CA1, AQP8, ITLN1, BEST4, KLF4, IQCF6) and turquoise (PAFAH1B1, LMNB1, CACYBP, GLO1, PUM3, POC1A, ASF1B, SDCCAG3, ASNS, PDCD2L) modules. The findings of the current study will help to improve our understanding of CRC. Moreover, the hub genes that we have identified could be considered as possible prognostic/diagnostic biomarkers. This study led to the determination of nine lncRNAs with no previous association with CRC development.


Assuntos
Neoplasias Colorretais/genética , Expressão Gênica/genética , Redes Reguladoras de Genes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/diagnóstico , Feminino , Humanos , Masculino
8.
Biomed Pharmacother ; 138: 111544, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34311539

RESUMO

The RNA-dependent RNA polymerase (RdRp) and 3C-like protease (3CLpro) from SARS-CoV-2 play crucial roles in the viral life cycle and are considered the most promising targets for drug discovery against SARS-CoV-2. In this study, FDA-approved drugs were screened to identify the probable anti-RdRp and 3CLpro inhibitors by molecular docking approach. The number of ligands selected from the PubChem database of NCBI for screening was 1760. Ligands were energy minimized using Open Babel. The RdRp and 3CLpro protein sequences were retrieved from the NCBI database. For Homology Modeling predictions, we used the Swiss model server. Their structure was then energetically minimized using SPDB viewer software and visualized in the CHIMERA UCSF software. Molecular dockings were performed using AutoDock Vina, and candidate drugs were selected based on binding affinity (∆G). Hydrogen bonding and hydrophobic interactions between ligands and proteins were visualized using Ligplot and the Discovery Studio Visualizer v3.0 software. Our results showed 58 drugs against RdRp, which had binding energy of - 8.5 or less, and 69 drugs to inhibit the 3CLpro enzyme with a binding energy of - 8.1 or less. Six drugs based on binding energy and number of hydrogen bonds were chosen for the next step of molecular dynamics (MD) simulations to investigate drug-protein interactions (including Nilotinib, Imatinib and dihydroergotamine for 3clpro and Lapatinib, Dexasone and Relategravir for RdRp). Except for Lapatinib, other drugs-complexes were stable during MD simulation. Raltegravir, an anti-HIV drug, was observed to be the best compound against RdRp based on docking binding energy (-9.5 kcal/mole) and MD results. According to the MD results and binding energy, dihydroergotamine is a suitable candidate for 3clpro inhibition (-9.6 kcal/mol). These drugs were classified into several categories, including antiviral, antibacterial, anti-inflammatory, anti-allergic, cardiovascular, anticoagulant, BPH and impotence, antipsychotic, antimigraine, anticancer, and so on. The common prescription-indications for some of these medication categories appeared somewhat in line with manifestations of COVID-19. We hope that they can be beneficial for patients with certain specific symptoms of SARS-CoV-2 infection, but they can also probably inhibit viral enzymes. We recommend further experimental evaluations in vitro and in vivo on these FDA-approved drugs to assess their potential antiviral effect on SARS-CoV-2.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Reposicionamento de Medicamentos , Inibidores Enzimáticos/uso terapêutico , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/efeitos adversos , COVID-19/virologia , Proteases 3C de Coronavírus/metabolismo , Di-Hidroergotamina/uso terapêutico , Aprovação de Drogas , Interações Hospedeiro-Patógeno , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA/metabolismo , Raltegravir Potássico/uso terapêutico , SARS-CoV-2/enzimologia , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA