Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 189(2): 644-665, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642548

RESUMO

The Solanaceae or "nightshade" family is an economically important group with remarkable diversity. To gain a better understanding of how the unique biology of the Solanaceae relates to the family's small RNA (sRNA) genomic landscape, we downloaded over 255 publicly available sRNA data sets that comprise over 2.6 billion reads of sequence data. We applied a suite of computational tools to predict and annotate two major sRNA classes: (1) microRNAs (miRNAs), typically 20- to 22-nucleotide (nt) RNAs generated from a hairpin precursor and functioning in gene silencing and (2) short interfering RNAs (siRNAs), including 24-nt heterochromatic siRNAs typically functioning to repress repetitive regions of the genome via RNA-directed DNA methylation, as well as secondary phased siRNAs and trans-acting siRNAs generated via miRNA-directed cleavage of a polymerase II-derived RNA precursor. Our analyses described thousands of sRNA loci, including poorly understood clusters of 22-nt siRNAs that accumulate during viral infection. The birth, death, expansion, and contraction of these sRNA loci are dynamic evolutionary processes that characterize the Solanaceae family. These analyses indicate that individuals within the same genus share similar sRNA landscapes, whereas comparisons between distinct genera within the Solanaceae reveal relatively few commonalities.


Assuntos
MicroRNAs , RNA Interferente Pequeno , Solanaceae , Metilação de DNA , RNA Polimerases Dirigidas por DNA/genética , Inativação Gênica , MicroRNAs/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Solanaceae/genética
2.
Theor Appl Genet ; 134(10): 3363-3378, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34283260

RESUMO

KEY MESSAGE: Six novel fruit weight QTLs were identified in tomato using multiple bi-parental populations developed from ancestral accessions. Beneficial alleles at these loci arose in semi-domesticated subpopulations and were likely left behind. This study paves the way to introgress these alleles into breeding programs. The size and weight of edible organs have been strongly selected during crop domestication. Concurrently, human have also focused on nutritional and cultural characteristics of fruits and vegetables, at times countering selective pressures on beneficial size and weight alleles. Therefore, it is likely that novel improvement alleles for organ weight still segregate in ancestral germplasm. To date, five domestication and diversification genes affecting tomato fruit weight have been identified, yet the genetic basis for increases in weight has not been fully accounted for. We found that fruit weight increased gradually during domestication and diversification, and semi-domesticated subpopulations featured high phenotypic and nucleotide diversity. Columella and septum fruit tissues were proportionally increased, suggesting targeted selection. We developed twenty-one F2 populations with parents fixed for the known fruit weight genes, corresponding to putative key transitions from wild to fully domesticated tomatoes. These parents also showed differences in fruit weight attributes as well as the developmental timing of size increase. A subset of populations was targeted for QTL-seq, leading to the identification of six uncloned fruit weight QTLs. Three QTLs, located on chromosomes 1, 2 and 3, were subsequently validated by progeny testing. By exploring the segregation of the known fruit weight genes and the identified QTLs, we estimated that most beneficial alleles in the newly identified loci arose in semi-domesticated subpopulations from South America and were not likely transmitted to fully domesticated landraces. Therefore, these alleles could be incorporated into breeding programs using the germplasm and genetic resources identified in this study.


Assuntos
Cromossomos de Plantas/genética , Domesticação , Frutas/genética , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Mapeamento Cromossômico/métodos , Frutas/fisiologia , Ligação Genética , Genoma de Planta , Solanum lycopersicum/fisiologia , Fenótipo , Proteínas de Plantas/genética , Locos de Características Quantitativas
3.
Front Plant Sci ; 12: 642828, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149747

RESUMO

Fruit flavor is defined as the perception of the food by the olfactory and gustatory systems, and is one of the main determinants of fruit quality. Tomato flavor is largely determined by the balance of sugars, acids and volatile compounds. Several genes controlling the levels of these metabolites in tomato fruit have been cloned, including LIN5, ALMT9, AAT1, CXE1, and LoxC. The aim of this study was to identify any association of these genes with trait variation and to describe the genetic diversity at these loci in the red-fruited tomato clade comprised of the wild ancestor Solanum pimpinellifolium, the semi-domesticated species Solanum lycopersicum cerasiforme and early domesticated Solanum lycopersicum. High genetic diversity was observed at these five loci, including novel haplotypes that could be incorporated into breeding programs to improve fruit quality of modern tomatoes. Using newly available high-quality genome assemblies, we assayed each gene for potential functional causative polymorphisms and resolved a duplication at the LoxC locus found in several wild and semi-domesticated accessions which caused lower accumulation of lipid derived volatiles. In addition, we explored gene expression of the five genes in nine phylogenetically diverse tomato accessions. In general, the expression patterns of these genes increased during fruit ripening but diverged between accessions without clear relationship between expression and metabolite levels.

4.
Cell ; 182(1): 145-161.e23, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553272

RESUMO

Structural variants (SVs) underlie important crop improvement and domestication traits. However, resolving the extent, diversity, and quantitative impact of SVs has been challenging. We used long-read nanopore sequencing to capture 238,490 SVs in 100 diverse tomato lines. This panSV genome, along with 14 new reference assemblies, revealed large-scale intermixing of diverse genotypes, as well as thousands of SVs intersecting genes and cis-regulatory regions. Hundreds of SV-gene pairs exhibit subtle and significant expression changes, which could broadly influence quantitative trait variation. By combining quantitative genetics with genome editing, we show how multiple SVs that changed gene dosage and expression levels modified fruit flavor, size, and production. In the last example, higher order epistasis among four SVs affecting three related transcription factors allowed introduction of an important harvesting trait in modern tomato. Our findings highlight the underexplored role of SVs in genotype-to-phenotype relationships and their widespread importance and utility in crop improvement.


Assuntos
Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Variação Estrutural do Genoma , Solanum lycopersicum/genética , Alelos , Sistema Enzimático do Citocromo P-450/genética , Ecótipo , Epistasia Genética , Frutas/genética , Duplicação Gênica , Genoma de Planta , Genótipo , Endogamia , Anotação de Sequência Molecular , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas/genética
5.
Mol Biol Evol ; 37(4): 1118-1132, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31912142

RESUMO

The process of plant domestication is often protracted, involving underexplored intermediate stages with important implications for the evolutionary trajectories of domestication traits. Previously, tomato domestication history has been thought to involve two major transitions: one from wild Solanum pimpinellifolium L. to a semidomesticated intermediate, S. lycopersicum L. var. cerasiforme (SLC) in South America, and a second transition from SLC to fully domesticated S. lycopersicum L. var. lycopersicum in Mesoamerica. In this study, we employ population genomic methods to reconstruct tomato domestication history, focusing on the evolutionary changes occurring in the intermediate stages. Our results suggest that the origin of SLC may predate domestication, and that many traits considered typical of cultivated tomatoes arose in South American SLC, but were lost or diminished once these partially domesticated forms spread northward. These traits were then likely reselected in a convergent fashion in the common cultivated tomato, prior to its expansion around the world. Based on these findings, we reveal complexities in the intermediate stage of tomato domestication and provide insight on trajectories of genes and phenotypes involved in tomato domestication syndrome. Our results also allow us to identify underexplored germplasm that harbors useful alleles for crop improvement.


Assuntos
Produtos Agrícolas/genética , Domesticação , Solanum lycopersicum/genética , Evolução Biológica , Fluxo Gênico , Genômica , América Latina , Filogeografia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA