Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Lasers Med Sci ; 13: e35, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743135

RESUMO

Introduction: Understanding the molecular mechanism of chronic low-dose ionizing radiation (LDIR) effects on the human body is the subject of many research studies. Several aspects of cell function such as cell proliferation, apoptosis, inflammation, and tumorigenesis are affected by LDIR. Detection of the main biological process that is targeted by LIDR via network analysis is the main aim of this study. Methods: GSE66720 consisting of gene expression profiles of human umbilical vein endothelial cells (HUVECs) (a suitable cell line to be investigated), including irradiated and control cells, was downloaded from Gene Expression Omnibus (GEO). The significant differentially expressed genes (DEGs) were determined and analyzed via protein-protein interaction (PPI) network analysis to find the central individuals. The main cell function which was related to the central nodes was introduced. Results: Among 64 queried DEGs, 48 genes were recognized by the STRING database. C-X-C motif chemokine ligand 8 (CXCL8), intercellular adhesion molecule 1 (ICAM1), Melanoma growth-stimulatory activity/growth-regulated protein α (CXCL1), vascular cell adhesion molecule 1 (VCAM-1), and nerve growth factor (NGF) were introduced as hub nodes. Conclusion: Findings indicate that inflammation is the main initial target of LDIR at the cellular level which is associated with alteration in the other essential functions of the irradiated cells.

2.
J Lasers Med Sci ; 13: e25, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743141

RESUMO

Introduction: Low-level laser radiation has a significant effect on cell proliferation. Various investigations into the effect of Er: YAG laser on the treated cell lines have been published. Determining core targeted proteins is an attractive subject. This research aimed at identifying the critical targeted protein by a low-level Er: YAG laser in primary osteoblast-like cells. Methods: Data were extracted from the literature about proteomic assessment of 3.3 J/cm2 of low-level Er: YAG laser radiation on osteoblast-like cells of rat calvaria. The significant differentially expressed proteins plus 100 first neighbors were analyzed via network analysis and gene ontology enrichment. Results: Nine differentially expressed proteins among the 12 queried proteins were included in the main connected component. Analysis revealed that Cxcl1 was a key targeted protein in response to laser radiation. The presence of Cxcl1 in the significant cellular pathways indicated that cell growth and proliferation were affected. Conclusion: It can be concluded that the immune system is affected by the laser to activate cellular defense against stress.

3.
Gastroenterol Hepatol Bed Bench ; 14(4): 317-322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659659

RESUMO

AIM: This study aimed to investigate the anticancer properties of physical activity by network analysis in trained rats. BACKGROUND: Much evidence supports the benefits of physical activity, most of which are related to metabolism regulation and body health. Deeper investigation deals with other features of physical activity, such as its anticancer properties. METHODS: Protein-protein interaction network analysis was applied to investigate the proteome profile of livers of rats subjected to physical activity through bioinformatics. Twelve differentially expressed proteins were searched and analyzed by Cytoscape 3.7.2 and its plug-ins. The network was analyzed to identify hub-bottleneck nodes. An action map was constructed for the central proteins. RESULTS: Among the queried proteins, Eno1 and Pgm1 were only assigned as hubs by Network Analzyer. Gpi, Pkm, Aldoa, and Aldoart2 were identified as central nodes among the first neighbors of network elements. Furthermore, the glycolytic, carbohydrate catabolic, and glucose metabolic processes are key elements that could be imperative in the mechanism of exercise in liver function. The anticancer properties of the central nodes were highlighted. CONCLUSION: The network findings indicate the anticancer properties of physical activity, which has also been supported by previous investigations.

4.
J Lasers Med Sci ; 12: e83, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155168

RESUMO

Introduction: Investigating the molecular mechanism of cellular response to light radiation has attracted many researchers' attention. In the present study, the critically affected gene by 7.5 min blue light radiation in human keratinocytes was investigated via network analysis. Methods: Gene expression profiles of human keratinocytes exposed to 7.5 min blue light radiation plus controls were extracted from Gene Expression Omnibus (GEO). The significant dysregulated genes plus 100 first neighbors were investigated by Cytoscape software and its applications. The central nodes of the network based on four centrality parameters were determined and discussed. Results: Among 6 significant dysregulated genes, 4 individuals were recognized by the STRING database. The network was constructed by using the 4 queried genes and 100 first neighbors. EGR1, STAT1, and ISG15 were identified as central nodes; however, the prominent role of EGR1 was highlighted. Conclusion: EGR1 appeared as a critically affected gene after blue light irradiation. It seems that this upregulated gene is responsible for protecting human keratinocytes against stress and cancer. Therefore, the application of blue light may be accompanied by antistress effects in the human body.

5.
J Lasers Med Sci ; 12: e87, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155172

RESUMO

Introduction: Excessive exposure to ultraviolet (UV) radiation may cause a variety of skin cancers and damage to the eye lens. The assessment of different aspects of UV damage has attracted researchers' interest. UV radiation to simple biological models such as Saccharomyces cerevisiae of yeast family could help to find out different molecular changes resulting from radiation. The assessment and network analysis of gene expression data about yeast cells radiated by the UV laser was the aim of this study. Methods: The gene expression profiles of S. cerevisiae samples in the presence of the UV laser at 30 seconds radiation and 15 minutes' post-radiation time are compared with the control profiles. The significant expressed genes interacted and the central nodes and related biological terms were identified. Results: The main connected component of the network including 427 nodes was analyzed and 11 central differentially expressed genes (DEGs) were determined. RPN11, UBI4, HSP82, and HSC82 as critical DEGs and "positive regulation of telomere maintenance" as a related biological term were introduced. Conclusion: The finding has provided a new perspective on laser application in the rejuvenation process. It seems that the laser can be used as a suitable agent against the aging process which is a limiting factor in human life.

6.
J Lasers Med Sci ; 12: e91, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155176

RESUMO

Introduction: Widespread application of lasers in different fields of medicine implies more investigations into the molecular mechanism of laser effects on the human body. Network analysis of the dysregulated genes of Saccharomyces cerevisiae samples are irradiated by a UV laser and harvested 30 minutes after radiation compared with a 15-minute group is the aim of this research. Methods: The significant dysregulated genes interacted via the STRING database, and the central nodes were determined by "Networkanalyzer" application of Cytoscape software. The critical genes and the related biological terms were identified via action map analysis and gene ontology assessment. Results: The gene expression profiles of the samples with 30-minute post-radiation time were different from the samples with 15 minutes of post-radiation time. 9 potent central genes, 50% of which were similar to the nodes of the 15-minute group, were identified. The terms "positive regulation of telomere maintenance" were targeted in the two sample groups. Conclusion: In spite of large alteration in the gene expression profiles of the samples, the results indicated that the main affected biological term for the 15-minute and 30-minute groups was similar.

7.
J Lasers Med Sci ; 11(Suppl 1): S55-S59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33995970

RESUMO

Introduction: Low-level laser therapy (LLLT) is accompanied by protein expression change in the body. There are many efforts to find a clear relationship between the differentially expressed proteins. This study aims to find the central differentiated expressed proteins of plasma after LLLT. Methods: Six proteins are extracted from a proteomics study and the network including these query proteins plus 100 first neighbors was constructed. The central proteins were determined based on degree value, betweenness centrality, closeness centrality (CC), and stress (The centrality parameters). Results: Among 106 nodes of the network, 10 proteins were characterized with the most values of degree, betweenness centrality, CC, and stress. These proteins were determined as central proteins in response to LLLT in plasma. Conclusion: Three query proteins, AHSG, FGG, and SERPINA1, plus 7 first neighbors, namely FGA, ALB, KNG1, FN1, APP, TIMP1, and F5, were identified as central proteins which were dysregulated.

8.
J Lasers Med Sci ; 11(Suppl 1): S101-S106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33995977

RESUMO

Introduction: Genomics and bioinformatics are useful methods for exploring unclear aspects of radiation effects on biological systems. Many radiation-induced alterations in irradiated samples are post-radiation time-dependent. This study aims to evaluate the post-irradiation effects of the gamma ray on human Jurkat cells. Methods: Gene expression profiles of the samples harvested 6 and 24 hours after radiation to find the critical differential expressed genes and the related pathways. Samples are provided from Gene Expression Omnibus (GEO) and analyzed by ClueGO. Results: Twnety-nine critical genes were determined as the important affected genes and 7 classes of related pathways were introduced. CCNE2, PSMD11, CDC25C, ANAPC1, PLK1, AURKA, and CCNB1 that were associated with more than 6 pathways were related to one of the determined pathway groups. Conclusion: Cell protecting pathways were associated with the genes (HSPA5, HSPA8, HSP90B1, HMMR, CEBPB, RXRA, and PSMD11) which were related to the minimum numbers of pathways. The finding of this study corresponds to repair processes which depend on post-radiation time. It seems these sets of genes are suitable candidates for further investigation.

9.
Gastroenterol Hepatol Bed Bench ; 13(Suppl1): S29-S39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585001

RESUMO

Liver cancer is the third cause of cancer-related deaths in the world. It is primarily divides into two main types, namely hepatocellular carcinoma (HC) and cholangiocarcinoma (IC). Due to the increasing number of patients with liver cancer and the high mortality rate, early diagnosis of the disease can be helpful in treatment, but most patients are diagnosed atlate stages of HC. The aim of this study is to screen and provide an overview on candidate biomarkers related to primary liver cancer to introduce the critical ones. In this study, various biomarkers related to the diagnosis of primary liver cancer have been studied. Accordingly, biomarkers are divided into different groups as blood biomarkers classified as serum and plasma biomarkers, tissue biomarkers, microRNA biomarkers, proteomic biomarkers and altered genes. Previous researches have focused on liver cells and bile ducts, the surround cellular environment, how cells differentiate, and the types of genes expressed in liver cancer. Some even have focused on the origin of tumor cells and how they differentiate and develop. In all these studies, the expression of specific proteins and genes in liver cancer has been considered. Based on available sources, biomarkers can be considered as candidates to diagnose and prognosis of various types of primary liver cancer, from sources such as blood, tissue, mic-RNA, proteome and genes. However, more investigations are required to introduce a biomarker for precise detection of early liver cancer.

10.
Gastroenterol Hepatol Bed Bench ; 13(Suppl1): S98-S105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585010

RESUMO

AIM: Evaluation of deregulated genes after long-term consuming of omeprazole via network analysis. BACKGROUND: Proton pump inhibitors (PPIs) are used to inhibit gastric high rate of acid secretion in patients. Omeprazole as a PPI is a common drug in this regard. Evaluation of long-term consumption of omeprazole is studied in the present study via its effects on the gene expression of "human coronary artery endothelial cells". METHODS: Net effect of the presence of omeprazole on gene expression profiles of "human coronary artery endothelial cells" was evaluated through data from gene expression omnibus (GEO). Results of protein-protein interaction (PPI) network analysis were assessed via biological process examination to find the critical deregulated genes after long-term consumption of omeprazole. RESULTS: "Negative regulation of muscle cell apoptotic process", "negative regulation of DNA binding", "telencephalon cell migration", "forebrain cell migration" "response to cadmium ion", "cell-cell recognition", "positive regulation of protein targeting to mitochondrion", and "central nervous system neuron development" were the clusters of biological processes that were associated to the long -term presence of omeprazole. The final critical deregulated genes were JAK2, PTK2, and NRG1. CONCLUSION: It can be concluded that cell cycle, proliferation, and apoptosis and several essential biological processes are affected and nervous system is a possible target related to the long-term consumption of omeprazole.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA