Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 388(3): 813-826, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336379

RESUMO

Systemic and cerebral inflammatory responses are implicated in the pathogenesis of obesity and associated metabolic impairment. While the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to obesity-associated inflammation, whether it contributes to the development or maintenance of obesity is unknown. We provide support for a direct role of saturated fatty acids, such as palmitic acid, as NLRP3 activating stimuli in obese states. To investigate whether NLRP3 activation contributes to the pathogenesis of diet-induced obesity (DIO) in mice, we tested two different clinical-stage NLRP3 inflammasome inhibitors. We demonstrate a contributory role of this key inflammasome to established obesity and associated systemic and cerebral inflammation. By comparing their effects to calorie restriction, we aimed to identify specific NLRP3-sensitive mechanisms contributing to obesity-induced inflammation (as opposed to be those regulated by weight loss per se). In addition, a direct comparison of an NLRP3 inhibitor to a glucagon like peptide-1 receptor agonist, semaglutide (Wegovy), in the DIO model allowed an appreciation of the relative efficacy of these two therapeutic strategies on obesity, its associated systemic inflammatory response, and cerebral gliosis. We show that two structurally distinct, NLRP3 inhibitors, NT-0249 and NT-0796, reverse obesity in the DIO mouse model and that brain exposure appears necessary for efficacy. In support of this, we show that DIO-driven hypothalamic glial fibrillary acidic protein expression is blocked by dosing with NT-0249/NT-0796. While matching weight loss driven by semaglutide or calorie restriction, remarkably, NLRP3 inhibition provided enhanced improvements in disease-relevant biomarkers of acute phase response, cardiovascular inflammation, and lipid metabolism. SIGNIFICANCE STATEMENT: Obesity is a global health concern that predisposes individuals to chronic disease such as diabetes and cardiovascular disease at least in part by promoting systemic inflammation. We report that in mice fed a high-fat, obesogenic diet, obesity is reversed by either of two inhibitors of the intracellular inflammatory mediator NLRP3. Furthermore, NLRP3 inhibition reduces both hypothalamic gliosis and circulating biomarkers of cardiovascular disease risk beyond what can be achieved by either the glucagon like peptide-1 agonist semaglutide or calorie restriction alone.


Assuntos
Doenças Cardiovasculares , Inflamassomos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Gliose/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos NOD , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Obesidade/metabolismo , Redução de Peso , Biomarcadores , Peptídeos Semelhantes ao Glucagon , Camundongos Endogâmicos C57BL
2.
J Med Chem ; 66(21): 14897-14911, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37874905

RESUMO

The NLRP3 inflammasome is a component of the innate immune system involved in the production of proinflammatory cytokines. Neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis, have been shown to have a component driven by NLRP3 inflammasome activation. Diseases such as these with large unmet medical needs have resulted in an interest in inhibiting the NLRP3 inflammasome as a potential pharmacological treatment, but to date, no marketed drugs specifically targeting NLRP3 have been approved. Furthermore, the requirement for CNS-penetrant molecules adds additional complexity to the search for NLRP3 inflammasome inhibitors suitable for clinical investigation of neuroinflammatory disorders. We designed a series of ester-substituted carbamate compounds as selective NLRP3 inflammasome inhibitors, leading to NT-0796, an isopropyl ester that undergoes intracellular conversion to NDT-19795, the carboxylic acid active species. NT-0796 was shown to be a potent and selective NLRP3 inflammasome inhibitor with demonstrated in vivo brain penetration.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Doenças Neuroinflamatórias , Encéfalo/metabolismo , Ésteres
3.
ACS Chem Biol ; 11(7): 2002-10, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27197014

RESUMO

The 2-oxoglutarate-dependent dioxygenase target class comprises around 60 enzymes including several subfamilies with relevance to human disease, such as the prolyl hydroxylases and the Jumonji-type lysine demethylases. Current drug discovery approaches are largely based on small molecule inhibitors targeting the iron/2-oxoglutarate cofactor binding site. We have devised a chemoproteomics approach based on a combination of unselective active-site ligands tethered to beads, enabling affinity capturing of around 40 different dioxygenase enzymes from human cells. Mass-spectrometry-based quantification of bead-bound enzymes using a free-ligand competition-binding format enabled the comprehensive determination of affinities for the cosubstrate 2-oxoglutarate and for oncometabolites such as 2-hydroxyglutarate. We also profiled a set of representative drug-like inhibitor compounds. The results indicate that intracellular competition by endogenous cofactors and high active site similarity present substantial challenges for drug discovery for this target class.


Assuntos
Dioxigenases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Proteômica
4.
Nat Biotechnol ; 29(3): 255-65, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21258344

RESUMO

The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.


Assuntos
Histona Desacetilases/química , Histona Desacetilases/metabolismo , Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos
5.
Nat Biotechnol ; 25(9): 1035-44, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17721511

RESUMO

We describe a chemical proteomics approach to profile the interaction of small molecules with hundreds of endogenously expressed protein kinases and purine-binding proteins. This subproteome is captured by immobilized nonselective kinase inhibitors (kinobeads), and the bound proteins are quantified in parallel by mass spectrometry using isobaric tags for relative and absolute quantification (iTRAQ). By measuring the competition with the affinity matrix, we assess the binding of drugs to their targets in cell lysates and in cells. By mapping drug-induced changes in the phosphorylation state of the captured proteome, we also analyze signaling pathways downstream of target kinases. Quantitative profiling of the drugs imatinib (Gleevec), dasatinib (Sprycel) and bosutinib in K562 cells confirms known targets including ABL and SRC family kinases and identifies the receptor tyrosine kinase DDR1 and the oxidoreductase NQO2 as novel targets of imatinib. The data suggest that our approach is a valuable tool for drug discovery.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Benzamidas , Extratos Celulares , Cromatografia de Afinidade , Receptor com Domínio Discoidina 1 , Enzimas Imobilizadas/antagonistas & inibidores , Células HeLa , Humanos , Mesilato de Imatinib , Concentração Inibidora 50 , Células K562 , Preparações Farmacêuticas , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Pirimidinas/farmacologia , Quinona Redutases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
6.
Med Res Rev ; 25(3): 310-30, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15593285

RESUMO

This work describes the preparation of approximately 13,000 compounds for rapid identification of hits in high-throughput screening (HTS). These compounds were designed as potential serine/threonine or tyrosine kinase inhibitors. The library consists of various scaffolds, e.g., purines, oxindoles, and imidazoles, whereby each core scaffold generally includes the hydrogen bond acceptor/donor properties known to be important for kinase binding. Several of these are based upon literature kinase templates, or adaptations of them to provide novelty. The routes to their preparation are outlined. A variety of automation techniques were used to prepare >500 compounds per scaffold. Where applicable, scavenger resins were employed to remove excess reagents and when necessary, preparative high performance liquid chromatography (HPLC) was used for purification. These compounds were screened against an 'in-house' kinase panel. The success rate in HTS was significantly higher than the corporate compound collection.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/síntese química , Imidazóis/síntese química , Imidazóis/farmacologia , Indóis/síntese química , Indóis/farmacologia , Isoquinolinas/síntese química , Isoquinolinas/farmacologia , Naftalenos/síntese química , Naftalenos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Purinas/síntese química , Purinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia
7.
J Comb Chem ; 4(1): 23-32, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11831879

RESUMO

A library of 422 1-(2-thiazolyl)-5-(trifluoromethyl)pyrazole-4-carboxamides was prepared in five steps using solution-phase chemistry. The first step in the synthesis was the reaction of ethyl 2-ethoxymethylene-3-oxo-4,4,4-trifluorobutanoate with thiosemicarbazide, which is reported in the literature to afford a 1:1 mixture of ethyl 1-thiocarbamoyl-5-(trifluoromethyl)pyrazole-4-carboxylate and ethyl 1-thiocarbamoyl-3-(trifluoromethyl)pyrazole-4-carboxylate. We reassigned the structure of the product to be a single compound, ethyl 5-hydroxy-1-thiocarbamoyl-5-(trifluoromethyl)-4,5-dihydro-1H-pyrazole-4-carboxylate. This common intermediate was diversified by reaction with 17 alpha-bromoketones affording, in two steps, 17 1-(2-thiazolyl)-5-(trifluoromethyl)pyrazole-4-carboxylic acids. Scavenger resins were used to facilitate formation and purification of up to 27 amides from each of these acids in the last step. In addition, the Curtius reaction was applied to 12 of the acids followed by quenching with alcohols to afford a 108-member carbamate library. Certain compounds in the two libraries were toxic to C. elegans.


Assuntos
Amidas/síntese química , Técnicas de Química Combinatória/métodos , Desenho de Fármacos , Hidrocarbonetos Fluorados/química , Pirazóis/síntese química , Tiazóis/síntese química , Amidas/farmacologia , Animais , Antinematódeos/síntese química , Antinematódeos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Carbamatos/química , Carbamatos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Nematoides/efeitos dos fármacos , Pirazóis/farmacologia , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA