Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Astronaut Sci ; 71(4): 33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021366

RESUMO

This paper documents the results from the highly successful Lunar flashlight Optical Navigation Experiment with a Star tracker (LONEStar). Launched in December 2022, Lunar Flashlight (LF) was a NASA-funded technology demonstration mission. After a propulsion system anomaly prevented capture in lunar orbit, LF was ejected from the Earth-Moon system and into heliocentric space. NASA subsequently transferred ownership of LF to Georgia Tech to conduct an unfunded extended mission to demonstrate further advanced technology objectives, including LONEStar. From August to December 2023, the LONEStar team performed on-orbit calibration of the optical instrument and a number of different OPNAV experiments. This campaign included the processing of nearly 400 images of star fields, Earth and Moon, and four other planets (Mercury, Mars, Jupiter, and Saturn). LONEStar provided the first on-orbit demonstrations of heliocentric navigation using only optical observations of planets. Of special note is the successful in-flight demonstration of (1) instantaneous triangulation with simultaneous sightings of two planets with the LOST algorithm and (2) dynamic triangulation with sequential sightings of multiple planets.

2.
Nanoscale ; 8(4): 2268-76, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26743173

RESUMO

The synthesis of few-layer tungsten diselenide (WSe2) via chemical vapor deposition typically results in highly non-uniform thickness due to nucleation initiated growth of triangular domains. In this work, few-layer p-type WSe2 with wafer-scale thickness and electrical uniformity is synthesized through direct selenization of thin films of e-beam evaporated W on SiO2 substrates. Raman maps over a large area of the substrate show small variations in the main peak position, indicating excellent thickness uniformity across several square centimeters. Additionally, field-effect transistors fabricated from the wafer-scale WSe2 films demonstrate uniform electrical performance across the substrate. The intrinsic field-effect mobility of the films at a carrier concentration of 3 × 10(12) cm(-2) is 10 cm(2) V(-1) s(-1). The unprecedented uniformity of the WSe2 on wafer-scale substrates provides a substantial step towards producing manufacturable materials that are compatible with conventional semiconductor fabrication processes.

3.
ACS Nano ; 6(11): 9837-45, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23075213

RESUMO

Materials that can perform simultaneous functions allow for reductions in the total system mass and volume. Developing technologies to produce flexible batteries with good performance in combination with high specific strength is strongly desired for weight- and power-sensitive applications such as unmanned or aerospace vehicles, high-performance ground vehicles, robotics, and smart textiles. State of the art battery electrode fabrication techniques are not conducive to the development of multifunctional materials due to their inherently low strength and conductivities. Here, we present a scalable method utilizing carbon nanotube (CNT) nonwoven fabric-based technology to develop flexible, electrochemically stable (∼494 mAh·g(-1) for 150 cycles) battery anodes that can be produced on an industrial scale and demonstrate specific strength higher than that of titanium, copper, and even a structural steel. Similar methods can be utilized for the formation of various cathode and anode composites with tunable strength and energy and power densities.


Assuntos
Fontes de Energia Elétrica , Eletrodos , Lítio/química , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Silício/química , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Íons , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula
4.
Adv Mater ; 24(4): 533-7, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22213011

RESUMO

Vapor deposition techniques were utilized to synthesize very thick (∼1 mm) Li-ion battery anodes consisting of vertically aligned carbon nanotubes coated with silicon and carbon. The produced anode demonstrated ultrahigh thermal (>400 W·m(-1) ·K(-1)) and high electrical (>20 S·m(-1)) conductivities, high cycle stability, and high average capacity (>3000 mAh·g(Si) (-1)). The processes utilized allow for the conformal deposition of other materials, thus making it a promising architecture for the development of Li-ion anodes and cathodes with greatly enhanced electrical and thermal conductivities.


Assuntos
Fontes de Energia Elétrica , Nanotubos de Carbono/química , Condutividade Elétrica , Eletrodos , Lítio/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA