Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JASA Express Lett ; 2(10): 100801, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36319215

RESUMO

Numerical models are currently used to understand how environmental fluctuations impact acoustic propagation. Such a process can be tedious in complex fluctuating environments. This letter proposes a complementary approach based upon canonical correlation analysis (CCA) to determine statistical relationships between two sets of observed acoustic and oceanographic variables. It is shown, as an example, how CCA puts forward the impact of external and internal tide on shallow water propagation. Results are consistent with the physical understanding of tide impact on acoustic propagation. They encourage the use of CCA for complex studies, in particular, for environments fluctuating under several environmental phenomena.


Assuntos
Análise de Correlação Canônica , Modelos Teóricos , Acústica , Oceanografia/métodos , Oceanos e Mares
2.
J Acoust Soc Am ; 152(3): 1252, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36182283

RESUMO

The Acoustic Laboratory for Marine Applications (ALMA) is a deployable and autonomous acoustic system, designed by DGA Naval Systems, to address problems in underwater acoustics, such as sound propagation in fluctuating environments. In this article, data from the ALMA-2016 at-sea campaign are used to analyze the ocean fluctuation's influence on sound propagation in a shallow-water waveguide. The experiment took place on the continental shelf of the island of Corsica in November 2016. A source and a receiver array were 9.3 km apart in a nearly constant water depth of 100 m. The source emitted a variety of signals from which the chirp (1-13 kHz) is used to extract the waveguide eigenrays. To do so, a time-domain beamforming is performed on the match-filtered received signals with an automatic detection of local maxima in the time of arrival/direction of arrival (TOA/DOA) domain. A 2 min acquisition period of more than 13 h duration shows significant fluctuations in eigenray TOAs/DOAs. Qualitative comparisons with synthetic signals obtained from simulations in two and three dimensions permit reproduction of the observed eigenray fluctuations without including range dependence of the sound-speed profile.


Assuntos
Acústica , Processamento de Sinais Assistido por Computador , Movimento (Física) , Espectrografia do Som , Água
3.
J Acoust Soc Am ; 142(4): 2143, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29092568

RESUMO

This paper deals with the loss of coherence in underwater direction-of-arrival estimation. The coherence loss, which typically arises from dynamical ocean fluctuations and unknown environmental parameters, may take the form of a multiplicative colored random noise applied to the measured acoustic signal. This specific multiplicative noise needs to be addressed with methodological developments. This paper proposes a weighting process that locally mitigates the effects of the coherence loss. More specially, a set of coherent sub-antennas is designed from the so-called Mutual Coherence Function (MCF). The assessed source position results from the combination of each sub-antenna by using a mixed norm. Two experiments are considered in the paper: either a random noise is sampled to simulate the effect of random ocean fluctuations, or a synthetic acoustic waveguide is used in which the coherence loss is due to some multipath interferences. It is shown that the weighting process allows for a decrease in the estimation error in comparison to a Conventional Beamformer (CB).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA