Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38606986

RESUMO

Condylar resorption is an aggressive and disability form of temporomandibular joint (TMJ) degenerative disease, usually non-respondent to conservative or minimally invasive therapies and often leading to surgical intervention and prostheses implantation. This condition is also one of the most dreaded postoperative complications of orthognathic surgery, with severe cartilage erosion and loss of subchondral bone volume and mineral density, associated with a painful or not inflammatory processes. Because regenerative medicine has emerged as an alternative for orthopedic cases with advanced degenerative joint disease, we conducted a phase I/IIa clinical trial (U1111-1194-6997) to evaluate the safety and efficacy of autologous nasal septal chondroprogenitor cells. Ten participants underwent biopsy of the nasal septum cartilage during their orthognathic surgery. The harvested cells were cultured in vitro and analyzed for viability, presence of phenotype markers for mesenchymal stem and/or chondroprogenitor cells, and the potential to differentiate into chondrocytes, adipocytes, and osteoblasts. After the intra-articular injection of the cell therapy, clinical follow-up was performed using the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) and computed tomography (CT) images. No serious adverse events related to the cell therapy injection were observed during the 12-month follow-up period. It was found that autologous chondroprogenitors reduced arthralgia, promoted stabilization of mandibular function and condylar volume, and regeneration of condylar tissues. This study demonstrates that chondroprogenitor cells from the nasal septum may be a promise strategy for the treatment of temporomandibular degenerative joint disease that do not respond to other conservative therapies.

2.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629136

RESUMO

Mesenchymal stromal cells (MSCs) have been considered a therapeutic strategy in regenerative medicine because of their regenerative and immunomodulatory properties. The translation of MSC-based products has some challenges, such as regulatory and scientific issues. Quality control should be standardized and optimized to guarantee the reproducibility, safety, and efficacy of MSC-based products to be administered to patients. The aim of this study was to develop MSC-based products for use in clinical practice. Quality control assays include cell characterization, cell viability, immunogenicity, and cell differentiation; safety tests such as procoagulant tissue factor (TF), microbiological, mycoplasma, endotoxin, genomic stability, and tumorigenicity tests; and potency tests. The results confirm that the cells express MSC markers; an average cell viability of 96.9%; a low expression of HLA-DR and costimulatory molecules; differentiation potential; a high expression of TF/CD142; an absence of pathogenic microorganisms; negative endotoxins; an absence of chromosomal abnormalities; an absence of genotoxicity and tumorigenicity; and T-lymphocyte proliferation inhibition potential. This study shows the relevance of standardizing the manufacturing process and quality controls to reduce variability due to the heterogeneity between donors. The results might also be useful for the implementation and optimization of new analytical techniques and automated methods to improve safety, which are the major concerns related to MSC-based therapy.


Assuntos
Bioensaio , Células-Tronco Mesenquimais , Humanos , Reprodutibilidade dos Testes , Testes de Carcinogenicidade , Endotoxinas , Controle de Qualidade
3.
Int J Lab Hematol ; 44(5): 900-906, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35644995

RESUMO

INTRODUCTION: Fanconi anaemia (FA) is a rare genetic disorder marked by progressive bone marrow failure, chromosomal fragility, and increased cancer susceptibility. Laboratory diagnosis includes chromosomal instability test and mutation investigation. A total of 15%-25% of all patients may have somatic mosaicism, characterized by two distinct haematopoietic cell populations, one resistant and one sensitive to agents that induce chromosomal breakage, which complicates the diagnosis by a high incidence of reverted cells leading to inconclusive or false-negative results. The study aimed to evaluate the use of bone marrow stromal mesenchymal cells (BM-MSCs) as an alternative, non-haematopoietic tissue for diagnosis. METHODS: Bone marrow mesenchymal stromal cells from 12 patients with positive diepoxybutane (DEB) tests were cultivated and analysed by cytogenetics and mutation investigation. RESULTS: The DEB test was performed at 0.1 and 0.01 µg/ml concentrations, with an index ranging from 0.24 to 1.00. At higher concentration, the metaphases number was lower, probably due to toxicity. Regarding the molecular investigation, all the mutations previously found in peripheral blood were identified on BM-MSC. CONCLUSION: This study demonstrated the possibility of using BM-MSCs as an alternative tissue for cytogenetic and molecular investigation. Future tests using an intermediate DEB concentration may lead to an optimal protocol that could be non-toxic to cells but provides conclusive results.


Assuntos
Anemia de Fanconi , Análise Citogenética , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Humanos , Mosaicismo , Mutação
4.
Stem Cell Res Ther ; 13(1): 122, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313959

RESUMO

BACKGROUND: COVID-19 is a multisystem disease that presents acute and persistent symptoms, the postacute sequelae (PASC). Long-term symptoms may be due to consequences from organ or tissue injury caused by SARS-CoV-2, associated clotting or inflammatory processes during acute COVID-19. Various strategies are being chosen by clinicians to prevent severe cases of COVID-19; however, a single treatment would not be efficient in treating such a complex disease. Mesenchymal stromal cells (MSCs) are known for their immunomodulatory properties and regeneration ability; therefore, they are a promising tool for treating disorders involving immune dysregulation and extensive tissue damage, as is the case with COVID-19. This study aimed to assess the safety and explore the long-term efficacy of three intravenous doses of UC-MSCs (umbilical cord MSCs) as an adjunctive therapy in the recovery and postacute sequelae reduction caused by COVID-19. To our knowledge, this is one of the few reports that presents the longest follow-up after MSC treatment in COVID-19 patients. METHODS: This was a phase I/II, prospective, single-center, randomized, double-blind, placebo-controlled clinical trial. Seventeen patients diagnosed with COVID-19 who require intensive care surveillance and invasive mechanical ventilation-critically ill patients-were included. The patient infusion was three doses of 5 × 105 cells/kg UC-MSCs, with a dosing interval of 48 h (n = 11) or placebo (n = 6). The evaluations consisted of a clinical assessment, viral load, laboratory testing, including blood count, serologic, biochemical, cell subpopulation, cytokines and CT scan. RESULTS: The results revealed that in the UC-MSC group, there was a reduction in the levels of ferritin, IL-6 and MCP1-CCL2 on the fourteen day. In the second month, a decrease in the levels of reactive C-protein, D-dimer and neutrophils and an increase in the numbers of TCD3, TCD4 and NK lymphocytes were observed. A decrease in extension of lung damage was observed at the fourth month. The improvement in all these parameters was maintained until the end of patient follow-up. CONCLUSIONS: UC-MSCs infusion is safe and can play an important role as an adjunctive therapy, both in the early stages, preventing severe complications and in the chronic phase with postacute sequelae reduction in critically ill COVID-19 patients. Trial registration Brazilian Registry of Clinical Trials (ReBEC), UTN code-U1111-1254-9819. Registered 31 October 2020-Retrospectively registered, https://ensaiosclinicos.gov.br/rg/RBR-3fz9yr.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Estudos Prospectivos , SARS-CoV-2
5.
Stem Cells Int ; 2022: 4930932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35047041

RESUMO

Dysfunctions in adipose tissue cells are responsible for several obesity-related metabolic diseases. Understanding the process of adipocyte formation is thus fundamental for understanding these diseases. The adipocyte differentiation of adipose-derived stem/stromal cells (ADSCs) showed a reduction in the mRNA level of the interleukin 21 receptor (IL21R) during this process. Although the receptor has been associated with metabolic diseases, few studies have examined its function in stem cells. In this study, we used confocal immunofluorescence assays to determine that IL21R colocalizes with mitochondrial protein ATP5B, ALDH4A1, and the nucleus of human ADSCs. We demonstrated that silencing and overexpression of IL21R did not affect the cell proliferation and mitochondrial activity of ADSCs. However, IL21R silencing did reduce ADSC adipogenic capacity. Further studies are needed to understand the mechanism involved between IL21R and the adipogenic differentiation process.

6.
Genet Mol Biol ; 44(3): e20200147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34496008

RESUMO

Induced pluripotent stem cells (iPSCs) are generated from adult cells that have been reprogrammed to pluripotency. However, in vitro cultivation and genetic reprogramming increase genetic instability, which could result in chromosomal abnormalities. Maintenance of genetic stability after reprogramming is required for possible experimental and clinical applications. The aim of this study was to analyze chromosomal alterations by using the G-banding karyotyping method applied to 97 samples from 38 iPSC cell lines generated from peripheral blood or Wharton's jelly. Samples from patients with long QT syndrome, Jervell and Lange-Nielsen syndrome and amyotrophic lateral sclerosis and from normal individuals revealed the following chromosomal alterations: acentric fragments, chromosomal fusions, premature centromere divisions, double minutes, radial figures, ring chromosomes, polyploidies, inversions and trisomies. An analysis of two samples generated from Wharton's jelly before and after reprogramming showed that abnormal clones can emerge or be selected and generate an altered lineage. IPSC lines may show clonal and nonclonal chromosomal aberrations in several passages (from P6 to P34), but these aberrations are more common in later passages. Many important chromosomal aberrations were detected, showing that G-banding is very useful for evaluating genetic instability with important repercussions for the application of iPSC lines.

7.
Res Vet Sci ; 140: 117-124, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34425413

RESUMO

The use of regenerative medicine for pets has been growing in recent years, and an increasing number of studies have contributed to the widespread use of cell therapies in clinical veterinary medicine. Mesenchymal stem cells (MSCs) can be isolated from different sources such as dental pulp and umbilical cord. Aiming safety and reproducibility of cell therapy in clinical practice by using sources easily obtained that are usually discarded, this study isolated, characterized, and evaluated the proliferation and colony formation potential of canine dental pulp-derived mesenchymal stem cells (cDPSCs) and canine umbilical cord tissue (cUCSCs). Three samples from each source were collected, isolated, and cultured. MSCs were differentiated into three lineages and quantified by spectrophotometry. For immunophenotypic characterization, antibodies were used to analyze the expression of cell surface markers, and 7-AAD and Annexin-V were used to analyze cell viability and apoptosis, respectively. For the clonogenic assay, cells were cultured, the colonies were stained, and counted. For the proliferation assay, the cells were plated in flasks for three days and added EdU nucleoside. cDPSCs and cUCSCs showed plastic adherence and fibroblastic morphology after cultivation. Both sources showed differentiation potential and showed CD29 and CD44 positivity and CD14, CD45, CD34 and HLA-DR negativity, and low mortality and apoptosis rates. There was no difference in proliferation rates between sources. Overall, although cUCSCs had a higher number of colony-forming units than cDPSCs, both sources presented MSCs characteristics and can be used safely as alternative sources in cell therapy.


Assuntos
Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos/veterinária , Células Cultivadas , Polpa Dentária , Cães , Reprodutibilidade dos Testes , Cordão Umbilical
8.
Cell Transplant ; 30: 9636897211021008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34074163

RESUMO

The coronavirus pandemic is one of the most significant public health events in recent history. Currently, no specific treatment is available. Some drugs and cell-based therapy have been tested as alternatives to decrease the disease's symptoms, length of hospital stay, and mortality. We reported the case of a patient with a severe manifestation of COVID-19 in critical condition who did not respond to the standard procedures used, including six liters of O2 supplementation under a nasal catheter and treatment with dexamethasone and enoxaparin in prophylactic dose. The patient was treated with tocilizumab and an advanced therapy product based on umbilical cord-derived mesenchymal stromal cells (UC-MSC). The combination of tocilizumab and UC-MSC proved to be safe, with no adverse effects, and the results of this case report prove to be a promising alternative in the treatment of patients with severe acute respiratory syndrome due to SARS-CoV-2.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , COVID-19/terapia , Transplante de Células-Tronco Mesenquimais , COVID-19/virologia , Terapia Combinada , Humanos , Imunofenotipagem , Cariotipagem , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , RNA Viral/análise , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Tórax/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Cordão Umbilical/citologia , Carga Viral , Tratamento Farmacológico da COVID-19
9.
Arch. endocrinol. metab. (Online) ; 65(3): 342-351, May-June 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1285166

RESUMO

ABSTRACT Objective: Adipose tissue-derived stromal/stem cells (ASCs) and vitamin D have immunomodulatory actions that could be useful for type 1 diabetes (T1D). We aimed in this study to investigate the safety and efficacy of ASCs + daily cholecalciferol (VIT D) for 6 months in patients with recent-onset T1D. Materials and methods: In this prospective, dual-center, open trial, patients with recent onset T1D received one dose of allogenic ASC (1 x 106 cells/kg) and cholecalciferol 2,000 UI/day for 6 months (group 1). They were compared to patients who received chol-ecalciferol (group 2) and standard treatment (group 3). Adverse events were recorded; C-peptide (CP), insulin dose and HbA1c were measured at baseline (T0), after 3 (T3) and 6 months (T6). Results: In group 1 (n = 7), adverse events included transient headache (all), mild local reactions (all), tachycardia (n = 4), abdominal cramps (n = 1), thrombophlebitis (n = 4), scotomas (n = 2), and central retinal vein occlusion at T3 (n = 1, resolution at T6). Group 1 had an increase in basal CP (p = 0.018; mean: 40.41+/-40.79 %), without changes in stimulated CP after mixed meal (p = 0.62), from T0 to T6. Basal CP remained stable in groups 2 and 3 (p = 0.58 and p = 0.116, respectively). Group 1 had small insulin requirements (0.31+/- 0.26 UI/kg) without changes at T6 (p = 0.44) and HbA1c decline (p = 0.01). At T6, all patients (100%; n = 7) in group 1 were in honeymoon vs 75% (n = 3/4) and 50% (n = 3/6) in groups 2 and 3, p = 0.01. Conclusions: Allogenic ASC + VIT D without immunosuppression was safe and might have a role in the preservation of β-cells in patients with recent-onset T1D. ClinicalTrials.gov: NCT03920397.


Assuntos
Humanos , Células-Tronco/citologia , Colecalciferol/uso terapêutico , Transplante de Células-Tronco Mesenquimais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Projetos Piloto , Tecido Adiposo/citologia , Estudos Prospectivos
10.
Arch Endocrinol Metab ; 65(3): 342-351, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33939911

RESUMO

OBJECTIVE: Adipose tissue-derived stromal/stem cells (ASCs) and vitamin D have immunomodulatory actions that could be useful for type 1 diabetes (T1D). We aimed in this study to investigate the safety and efficacy of ASCs + daily cholecalciferol (VIT D) for 6 months in patients with recent-onset T1D. METHODS: In this prospective, dual-center, open trial, patients with recent onset T1D received one dose of allogenic ASC (1 × 106 cells/kg) and cholecalciferol 2,000 UI/day for 6 months (group 1). They were compared to patients who received chol-ecalciferol (group 2) and standard treatment (group 3). Adverse events were recorded; C-peptide (CP), insulin dose and HbA1c were measured at baseline (T0), after 3 (T3) and 6 months (T6). RESULTS: In group 1 (n = 7), adverse events included transient headache (all), mild local reactions (all), tachycardia (n = 4), abdominal cramps (n = 1), thrombophlebitis (n = 4), scotomas (n = 2), and central retinal vein occlusion at T3 (n = 1, resolution at T6). Group 1 had an increase in basal CP (p = 0.018; mean: 40.41+/-40.79 %), without changes in stimulated CP after mixed meal (p = 0.62), from T0 to T6. Basal CP remained stable in groups 2 and 3 (p = 0.58 and p = 0.116, respectively). Group 1 had small insulin requirements (0.31+/- 0.26 UI/kg) without changes at T6 (p = 0.44) and HbA1c decline (p = 0.01). At T6, all patients (100%; n = 7) in group 1 were in honeymoon vs 75% (n = 3/4) and 50% (n = 3/6) in groups 2 and 3, p = 0.01. CONCLUSION: Allogenic ASC + VIT D without immunosuppression was safe and might have a role in the preservation of ß-cells in patients with recent-onset T1D. ClinicalTrials.gov: NCT03920397.


Assuntos
Colecalciferol/uso terapêutico , Diabetes Mellitus Tipo 1 , Transplante de Células-Tronco Mesenquimais , Células-Tronco/citologia , Tecido Adiposo/citologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Projetos Piloto , Estudos Prospectivos
11.
J Clin Exp Dent ; 13(1): e8-e13, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33425225

RESUMO

BACKGROUND: Stem cells associated with growth factors have been shown to improve bone healing and the osseointegration of dental implants. A Brazilian miniature pig model was used to evaluate the effect of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) associated with platelet-rich plasma (PRP) on the osseointegration of immediately placed dental implants. MATERIAL AND METHODS: A total of four male adult miniature pigs were used in this study. BM-MSCs from each pig were isolated from the iliac crest and expanded in vitro. The undifferentiated BM-MSCs were mixed with autologous PRP and implanted in the post-extraction sockets at the experimental sites before implant placement (10 x 106 cells/ socket). The control sites did not receive either BM-MSC or PRP. Each animal received four implants in the control side and 04 on the experimental side, totalizing 32 implants. The specimens were analyzed radiographically and histomorphometrically to determine the implant loss rate (ILR), the bone-implant contact (BIC), and bone density within the threads (BDWT). RESULTS: The ILR, the BIC, and the BDWT for the control and experimental sites were respectively 25.0% and 18.7% (p=0.686); 39.0% and 27.7% (p=0.110); 46.8% and 36.5% (p=0.247). CONCLUSIONS: The use of BM-MSCs + PRP in conjunction with immediately placed implants showed a lower ILR but there was no significant effect on the osseointegration of the dental implants. More preclinical studies, in large animal models, are needed to establish whether BM-MSCs associated with PRP could be used for the enhancement of the osseointegration of dental implants. Key words:Osseointegration, bone marrow-derived mesenchymal stem cells, platelet-rich plasma, dental implants, minipigs.

12.
Neurosci Lett ; 734: 135134, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32531527

RESUMO

The objective was to evaluate the effect of human adipose-derived stem cell (hADSC) infusion on impaired hindlimb function and urinary continence after spinal cord contusion in rats. hADSCs were transplanted into the injured spinal cords of rats 7 and 14 days after injury in two groups (B and C). Group C also received methylprednisolone sodium succinate (MPSS) after 3 h of injury. The control group (group A) did not receive corticoids or stem cells. Voiding and motor performance evaluations were performed daily for 90 days post-transplantation. Cells were labeled with PKH26 or PKH67 for in vitro monitoring. For in vivo screening, the cells were evaluated for bioluminescence. The levels of some cytokines were quantified in different times. Euthanasia was performed 90 days post-transplant. ß-tubulin III expression was evaluated in the spinal cord of the animals from all groups. As a result, we observed a recovery of 66.6 % and 61.9 % in urinary continence of animals from groups B and C, respectively. Partial recovery of motor was observed in 23.8 % and 19 % of the animals from groups B and C, respectively. Cells remained viable at the site up to 90 days after transplantation. No significant difference was observed in levels of cytokines and thickness of urinary bladders between groups. A smaller percentage of tissue injury and higher concentrations of neuropils were observed in the spinal cords of the animals from groups B and C than control group. Thus, hADSCs transplantation with or without MPSS, contributed to the improvement in voiding and motor performance of Wistar rats submitted to compressive spinal cord injury.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal , Animais , Feminino , Humanos , Células-Tronco Mesenquimais , Atividade Motora/fisiologia , Ratos , Ratos Wistar , Micção/fisiologia
13.
Front Vet Sci ; 6: 383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781580

RESUMO

Paraparesis and paraplegia are common conditions in dogs, most often caused by a disc herniation in the thoracolumbar spinal segments (T3-L3), which is a neurological emergency. Surgical decompression should be performed as soon as possible when spinal compression is revealed by myelography, computed tomography, or magnetic resonance imaging. Mesenchymal stem-cell therapy is a promising adjunct treatment for spinal cord injury. This study sought to compare the effects of surgical decompression alone and combined with an allogeneic transplantation of canine adipose tissue-derived mesenchymal stem cells (cAd-MSCs) in the treatment of dogs with acute paraplegia. Twenty-two adult dogs of different breeds with acute paraplegia resulting from a Hansen type I disc herniation in the thoracolumbar region (T3-L3) were evaluated using computed tomography. All dogs had grade IV or V lesions and underwent surgery within 7 days after symptom onset. They were randomly assigned into two groups, 11 dogs in each. The dogs in Group I underwent hemilaminectomy, and those in Group II underwent hemilaminectomy and cAd-MSC epidural transplantation. In both groups, all dogs with grade IV lesions recovered locomotion. The median locomotion recovery period was 7 days for Group II and 21 days for Group I, and this difference was statistically significant (p < 0.05). Moreover, the median length of hospitalization after the surgery was statistically different between the two groups (Group I, 4 days; Group II, 3 days; p < 0.05). There were no statistically significant between-group differences regarding the number of animals with grade IV or V lesions that recovered locomotion and nociception. In conclusion, compared with surgical decompression alone, the use of epidural cAd-MSC transplantation with surgical decompression may contribute to faster locomotor recovery in dogs with acute paraplegia and reduce the length of post-surgery hospitalization.

14.
Stem Cells Int ; 2018: 5412478, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760727

RESUMO

Pharmacological approaches are partially effective in limiting infarct size. Cell therapies using a cell population enriched with endothelial progenitor cells (EPCs) CD133+ have opened new perspectives for the treatment of ischemic areas after infarction. This preclinical study evaluated the effect of intramyocardial transplantation of purified or expanded human umbilical cord blood-derived CD133+ cells on the recovery of rats following acute myocardial infarction (AMI). Histology studies, electrocardiogram, and fluorescence in situ hybridization (FISH) were used to evaluate heart recovery. Purified CD133+ cells, enriched in endothelial progenitor cells, when expanded in vitro acquired an endothelial-like cell phenotype expressing CD31 and von Willebrand factor (vWF). The group of infarcted rats that received expanded CD133+ cells had a more significant recovery of contraction performance and less heart remodeling than the group that received purified CD133+ cells. Either purified or expanded CD133+ cells were able to induce neovascularization in the infarcted myocardium in an equivalent manner. Few human cells were detected in the infarcted myocardium of the rats 28 days after transplantation suggesting that the effects observed might be related primarily to paracrine activity. Although both cell populations ameliorated the infarcted heart and are suitable for regeneration of the vascular system, expanded CD133+ cells are more beneficial and promising candidates for vascular regeneration.

15.
Stem Cell Res Ther ; 9(1): 94, 2018 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-29625584

RESUMO

BACKGROUND: Upon orthognathic mandibular advancement surgery the adjacent soft tissues can displace the distal bone segment and increase the load on the temporomandibular joint causing loss of its integrity. Remodeling of the condyle and temporal fossa with destruction of condylar cartilage and subchondral bone leads to postsurgical condylar resorption, with arthralgia and functional limitations. Patients with severe lesions are refractory to conservative treatments, leading to more invasive therapies that range from simple arthrocentesis to open surgery and prosthesis. Although aggressive and with a high risk for the patient, surgical invasive treatments are not always efficient in managing the degenerative lesions. METHODS: We propose a regenerative medicine approach using in-vitro expanded autologous cells from nasal septum applied to the first proof-of-concept patient. After the required quality controls, the cells were injected into each joint by arthrocentesis. Results were monitored by functional assays and image analysis using computed tomography. RESULTS: The cell injection fully reverted the condylar resorption, leading to functional and structural regeneration after 6 months. Computed tomography images showed new cortical bone formation filling the former cavity space, and a partial recovery of condylar and temporal bones. The superposition of the condyle models showed the regeneration of the bone defect, reconstructing the condyle original form. CONCLUSIONS: We propose a new treatment of condylar resorption subsequent to orthognathic surgery, presently treated only by alloplastic total joint replacement. We propose an intra-articular injection of autologous in-vitro expanded cells from the nasal septum. The proof-of-concept treatment of a selected patient that had no alternative therapeutic proposal has given promising results, reaching full regeneration of both the condylar cartilage and bone at 6 months after the therapy, which was fully maintained after 1 year. This first case is being followed by inclusion of new patients with a similar pathological profile to complete an ongoing stage I/II study. TRIAL REGISTRATION: This clinical trial is approved by the National Commission of Ethics in Medical Research (CONEP), Brazil, CAAE 12484813.0.0000.5245, and retrospectively registered in the Brazilian National Clinical Trials Registry and in the USA Clinical Trials Registry under the Universal Trial Number (UTN) U1111-1194-6997 .


Assuntos
Regeneração Óssea , Reabsorção Óssea/cirurgia , Transplante de Células/métodos , Condrócitos/transplante , Cirurgia Ortognática/métodos , Articulação Temporomandibular/cirurgia , Adulto , Reabsorção Óssea/patologia , Células Cultivadas , Humanos , Masculino , Septo Nasal/citologia , Articulação Temporomandibular/fisiologia , Transplante Autólogo
16.
Rev. bras. ortop ; 53(1): 45-52, Jan.-Feb. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-899238

RESUMO

ABSTRACT Objective: To evaluate the ability of the eluate from fibrin-rich plasma (FRP) membrane to induce proliferation and differentiation of isolated human adipose-derived stem cells (ASCs) into chondrocytes. Method: FRP membranes were obtained by centrifugation of peripheral blood from two healthy donors, cut, and maintained in culture plate wells for 48 h to prepare the fibrin eluate. The SCATh were isolated from adipose tissue by collagenase digestion solution, and expanded in vitro. Cells were expanded and treated with DMEM-F12 culture, a commercial media for chondrogenic differentiation, and eluate from FRP membrane for three days, and labeled with BrdU for quantitative assessment of cell proliferation using the High-Content Operetta® imaging system. For the chondrogenic differentiation assay, the SCATh were grown in micromass for 21 days and stained with toluidine blue and aggrecan for qualitative evaluation by light microscopy. The statistical analysis was performed using ANOVA and Tukey's test. Results: There was a greater proliferation of cells treated with the eluate from FRP membrane compared to the other two treatments, where the ANOVA test showed significance (p < 0.001). The differentiation into chondrocytes was visualized by the presence of mucopolysaccharide in the matrix of the cells marked in blue toluidine and aggrecan. Conclusions: Treatment with eluate from FRP membrane stimulated cell proliferation and induced differentiation of the stem cells into chondrocytes, suggesting a potential application of FRP membranes in hyaline cartilage regeneration therapies.


RESUMO Objetivo: Avaliar a capacidade do eluato proveniente da membrana de plasma rico em fibrina (PRF) de induzir proliferação e diferenciação das células-tronco humanas isoladas de tecido adiposo (CTDAh) em condrócitos. Método: As membranas de PRF foram obtidas por centrifugação de sangue periférico de dois indivíduos saudáveis, cortadas, colocadas em poços de placa de cultivo por 48 h para obtenção do eluato de fibrina. As CTDAh foram isoladas do tecido adiposo por digestão com solução de colagenase e expandidas in vitro. As células foram expandidas e tratadas com meio de cultivo DMEM-F12, meio comercial para diferenciação condrocítica, e eluato de fibrina durante três dias e marcadas com BrdU para avaliação quantitativa da proliferação celular com o uso do sistema de imagens High-Content Operetta®. Para o ensaio de diferenciação condrogênica, as CTDAh foram cultivadas em micromassa por 21 dias e coradas com azul de toluidina e agrecana para avaliação qualitativa em microscópio óptico. As avaliações estatísticas foram feitas por meio dos testes Anova e Tukey. Resultados: Houve uma maior proliferação das células tratadas com o eluato de fibrina comparativamente com os outros dois tratamentos, nos quais o teste Anova apontou significância (p < 0,001). A diferenciação em condrócitos foi visualizada pela presença de mucopolissacarídeos na matriz das células tratadas com meio de diferenciação ou eluato e marcação positiva para agrecana. Conclusões: O tratamento com o eluato da membrana de fibrina estimulou a proliferação celular e induziu a diferenciação das células-tronco em condrócitos, o que sugere uma potencial aplicação da membrana de PRF nas terapias de regeneração de cartilagem hialina.


Assuntos
Humanos , Cartilagem , Membranas , Plasma Rico em Plaquetas , Regeneração
17.
Rev Bras Ortop ; 53(1): 45-52, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29367906

RESUMO

OBJECTIVE: To evaluate the ability of the eluate from fibrin-rich plasma (FRP) membrane to induce proliferation and differentiation of isolated human adipose-derived stem cells (ASCs) into chondrocytes. METHOD: FRP membranes were obtained by centrifugation of peripheral blood from two healthy donors, cut, and maintained in culture plate wells for 48 h to prepare the fibrin eluate. The SCATh were isolated from adipose tissue by collagenase digestion solution, and expanded in vitro. Cells were expanded and treated with DMEM-F12 culture, a commercial media for chondrogenic differentiation, and eluate from FRP membrane for three days, and labeled with BrdU for quantitative assessment of cell proliferation using the High-Content Operetta® imaging system. For the chondrogenic differentiation assay, the SCATh were grown in micromass for 21 days and stained with toluidine blue and aggrecan for qualitative evaluation by light microscopy. The statistical analysis was performed using ANOVA and Tukey's test. RESULTS: There was a greater proliferation of cells treated with the eluate from FRP membrane compared to the other two treatments, where the ANOVA test showed significance (p < 0.001). The differentiation into chondrocytes was visualized by the presence of mucopolysaccharide in the matrix of the cells marked in blue toluidine and aggrecan. CONCLUSIONS: Treatment with eluate from FRP membrane stimulated cell proliferation and induced differentiation of the stem cells into chondrocytes, suggesting a potential application of FRP membranes in hyaline cartilage regeneration therapies.


OBJETIVO: Avaliar a capacidade do eluato proveniente da membrana de plasma rico em fibrina (PRF) de induzir proliferação e diferenciação das células-tronco humanas isoladas de tecido adiposo (CTDAh) em condrócitos. MÉTODO: As membranas de PRF foram obtidas por centrifugação de sangue periférico de dois indivíduos saudáveis, cortadas, colocadas em poços de placa de cultivo por 48 h para obtenção do eluato de fibrina. As CTDAh foram isoladas do tecido adiposo por digestão com solução de colagenase e expandidas in vitro. As células foram expandidas e tratadas com meio de cultivo DMEM-F12, meio comercial para diferenciação condrocítica, e eluato de fibrina durante três dias e marcadas com BrdU para avaliação quantitativa da proliferação celular com o uso do sistema de imagens High-Content Operetta®. Para o ensaio de diferenciação condrogênica, as CTDAh foram cultivadas em micromassa por 21 dias e coradas com azul de toluidina e agrecana para avaliação qualitativa em microscópio óptico. As avaliações estatísticas foram feitas por meio dos testes Anova e Tukey. RESULTADOS: Houve uma maior proliferação das células tratadas com o eluato de fibrina comparativamente com os outros dois tratamentos, nos quais o teste Anova apontou significância (p < 0,001). A diferenciação em condrócitos foi visualizada pela presença de mucopolissacarídeos na matriz das células tratadas com meio de diferenciação ou eluato e marcação positiva para agrecana. CONCLUSÕES: O tratamento com o eluato da membrana de fibrina estimulou a proliferação celular e induziu a diferenciação das células-tronco em condrócitos, o que sugere uma potencial aplicação da membrana de PRF nas terapias de regeneração de cartilagem hialina.

18.
Regul Toxicol Pharmacol ; 92: 75-82, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29129620

RESUMO

With the increasing need to develop in vitro assays to replace animal use, human stem cell-derived methods are emerging and showing outstanding contributions to the toxicological screening of substances. Adult human stem cells such as adipose-derived stem cells (ADSC) and periodontal ligament stem cells (PDLSC) were used as cell substrates for a cytotoxicity assay and toxicity prediction using the neutral red uptake (NRU) assay. First, primary cell cultures from three independent donors, from each tissue source, were characterized as mesenchymal stem cells (MSC) by plastic adherence and appropriate immunophenotype for MSC markers (positive for CD90, CD73, and CD105 and negative for CD11b, CD34, CD45, HLADR, and CD19). Furthermore, ADSC and PDLSC were able to differentiate into adipocytes and osteoblasts when maintained under the same culture conditions previously established for the NRU assay. NRU assays for three reference test substances were performed. R2 was higher than 0.85 for all conditions, showing the feasibility to calculate IC50 values. The IC50 values were then used to predict the LD50 of the test substances, which were comparable to previous results and the ICCVAM standard test report. Primary ADSC and PDLSC showed the potential to be considered as additional models for use in cytotoxicity assays.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Bioensaio/métodos , Citotoxinas/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Ligamento Periodontal/metabolismo , Células-Tronco/metabolismo
19.
Rev. bras. ginecol. obstet ; 39(5): 217-223, May 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-898862

RESUMO

Abstract Purpose To evaluate the effect of mesenchymal stem cells (MSCs) on fertility in experimental retrocervical endometriosis. Methods A total of 27 New Zealand rabbits were divided into three groups: endometriosis, in which endometrial implants were created; mesenchymal, in which MSCs were applied in addition to the creation of endometrial implants; and control, the group without endometriosis. Fisher's exact test was performed to compare the dichotomous qualitative variables among the groups. The quantitative variables were compared by the nonparametric Mann-Whitney and Kruskal-Wallis tests. The MannWhitney test was used for post-hoc multiple comparison with Boniferroni correction. Results Regarding the beginning of the fertile period, the three groups had medians of 14±12.7, 40±5, and 33±8.9 days respectively (p = 0.005). With regard to fertility (number of pregnancies), the endometriosis and control groups showed a rate of 77.78%, whereas the mesenchymal group showed a rate of 11.20% (p = 0.015). No differences in Keenan's histological classification were observed among the groups (p = 0.730). With regard to the macroscopic appearance of the lesions, the mesenchymal group showed the most pelvic adhesions. Conclusion The use of MSCs in endometriosis negatively contributed to fertility, suggesting the role of these cells in the development of this disease.


Resumo Objetivo Avaliar o efeito das células-tronco mesenquimais sobre a fertilidade na endometriose retrocervical experimental. Métodos Um total de 27 coelhas da raça Nova Zelândia foram divididas em três grupos: endometriose, em que os implantes endometriais foram criados; mesenquimal, em que as células-tronco mesenquimais foram aplicadas complementarmente à criação implantes endometriais; e controle, sem endometriose. O teste exato de Fisher foi realizado para comparar variáveis dicotômicas qualitativas entre os grupos. As variáveis quantitativas foram comparadas pelos testes não paramétricos de MannWhitney e Kruskal-Wallis. O teste de Mann-Whitney foi utilizado para a comparação múltipla pós-hoc com correção de Boniferroni. Resultados em relação ao início do período fértil, os grupos endometriose, mesenquimal e controle tiveram medianas de 14±12,7; 40±5; e 33±8,9 dias, respectivamente (p = 0,005). Sobre a taxa de fertilidade (número de gravidezes), os grupos endometriose e controle mostraram uma taxa de 77,78%, enquanto o grupo mesenquimal mostrou uma taxa de 11,20% (p = 0,015). Não foram observadas diferenças na classificação histológica de Keenan entre os grupos (p = 0,730). No que diz respeito à aparência macroscópica das lesões, o grupo mesenquimal mostrou maiores adesões pélvicas. Conclusão O uso de células-tronco mesenquimais na endometriose contribuiu negativamente para a fertilidade, sugerindo o papel dessas células no desenvolvimento da doença.


Assuntos
Humanos , Animais , Doenças do Colo do Útero/etiologia , Endometriose/etiologia , Células-Tronco Mesenquimais/fisiologia , Infertilidade Feminina/etiologia , Coelhos , Doenças do Colo do Útero/patologia , Modelos Animais de Doenças , Endometriose/patologia , Infertilidade Feminina/patologia
20.
Rev Bras Ginecol Obstet ; 39(5): 217-223, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28399593

RESUMO

Purpose To evaluate the effect of mesenchymal stem cells (MSCs) on fertility in experimental retrocervical endometriosis. Methods A total of 27 New Zealand rabbits were divided into three groups: endometriosis, in which endometrial implants were created; mesenchymal, in which MSCs were applied in addition to the creation of endometrial implants; and control, the group without endometriosis. Fisher's exact test was performed to compare the dichotomous qualitative variables among the groups. The quantitative variables were compared by the nonparametric Mann-Whitney and Kruskal-Wallis tests. The Mann-Whitney test was used for post-hoc multiple comparison with Boniferroni correction. Results Regarding the beginning of the fertile period, the three groups had medians of 14 ± 12.7, 40 ± 5, and 33 ± 8.9 days respectively (p = 0.005). With regard to fertility (number of pregnancies), the endometriosis and control groups showed a rate of 77.78%, whereas the mesenchymal group showed a rate of 11.20% (p = 0.015). No differences in Keenan's histological classification were observed among the groups (p = 0.730). With regard to the macroscopic appearance of the lesions, the mesenchymal group showed the most pelvic adhesions. Conclusion The use of MSCs in endometriosis negatively contributed to fertility, suggesting the role of these cells in the development of this disease.


Objetivo Avaliar o efeito das células-tronco mesenquimais sobre a fertilidade na endometriose retrocervical experimental. Métodos Um total de 27 coelhas da raça Nova Zelândia foram divididas em três grupos: endometriose, em que os implantes endometriais foram criados; mesenquimal, em que as células-tronco mesenquimais foram aplicadas complementarmente à criação implantes endometriais; e controle, sem endometriose. O teste exato de Fisher foi realizado para comparar variáveis dicotômicas qualitativas entre os grupos. As variáveis quantitativas foram comparadas pelos testes não paramétricos de Mann-Whitney e Kruskal-Wallis. O teste de Mann-Whitney foi utilizado para a comparação múltipla pós-hoc com correção de Boniferroni. Resultados em relação ao início do período fértil, os grupos endometriose, mesenquimal e controle tiveram medianas de 14 ± 12,7; 40 ± 5; e 33 ± 8,9 dias, respectivamente (p = 0,005). Sobre a taxa de fertilidade (número de gravidezes), os grupos endometriose e controle mostraram uma taxa de 77,78%, enquanto o grupo mesenquimal mostrou uma taxa de 11,20% (p = 0,015). Não foram observadas diferenças na classificação histológica de Keenan entre os grupos (p = 0,730). No que diz respeito à aparência macroscópica das lesões, o grupo mesenquimal mostrou maiores adesões pélvicas. Conclusão O uso de células-tronco mesenquimais na endometriose contribuiu negativamente para a fertilidade, sugerindo o papel dessas células no desenvolvimento da doença.


Assuntos
Endometriose/etiologia , Infertilidade Feminina/etiologia , Células-Tronco Mesenquimais , Doenças do Colo do Útero/etiologia , Animais , Modelos Animais de Doenças , Endometriose/patologia , Feminino , Infertilidade Feminina/patologia , Células-Tronco Mesenquimais/fisiologia , Coelhos , Doenças do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA