Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 75(1): 22-35, 1999 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-10462701

RESUMO

In rat osteoblast-like cells, a time-dependent sequence of growth and differentiation-dependent genes has been identified and a model of osteoblast differentiation in culture suggested. We investigated the expression of the bone matrix-associated proteins osteonectin and procollagen I and of the bone cell phenotype-related proteins alkaline phosphatase and osteocalcin during cell culture in primary human osteoblast like cells. Primary human explant cultures from nine young healthy donors were established under highly standardized conditions. Cells in the second passage were analyzed on different days from day 1 to 32, comparing cells growing under the influence of ascorbate with controls. Gene expression was determined by Northern blot analysis or polymerase chain reaction. Osteocalcin expression was also investigated after 1,25-(OH)(2)D(3) stimulation. On the protein level, newly synthesized collagen I, alkaline phosphatase activity, and secretion of osteocalcin were analyzed at all time points. On comparing our findings to the pattern of gene expression suggested for the rat calvarial osteoblast system, we found a similar developmental sequence for the so-called "proliferation" as well as a similar, but lengthened, sequence for the "matrix maturation stage." During "matrix maturation," we found an ongoing proliferation despite increased alkaline phosphatase and decreased procollagen I gene expression. Our study, therefore, shows that in pHOB the gene expression profile proceeded to the "matrix maturation stage," as defined by Owen and colleagues, independent of ongoing proliferation. We were unable to observe the mineralization period as demonstrated by the missing increase of osteocalcin expression and lack of nodule formation in our human osteoblast model. In contrast to the rat system, we found a proliferation stimulating influence of ascorbate, suggesting species-specific differences in response to differentiation factors. From these data, we conclude that general considerations on physiology and pathophysiology of bone cell differentiation have to be confirmed in the human osteoblastic cell system.


Assuntos
Diferenciação Celular , Osteoblastos/metabolismo , Crânio/metabolismo , Adulto , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Ácido Ascórbico/farmacologia , Calcificação Fisiológica , Calcitriol/farmacologia , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Pessoa de Meia-Idade , Osteocalcina/genética , Osteocalcina/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Fenótipo , Pró-Colágeno/genética , Pró-Colágeno/metabolismo , RNA Mensageiro/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA