Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(32): 38716-38728, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37523484

RESUMO

We report the synthesis of a stable heterogeneous catalyst based on copper metal nanoparticles with oxidized surface supported on ZIF-8 for the oxidation of benzyl alcohol under mild temperature and using air as a sustainable oxygen source as well as for the implementation of the tandem "one-pot" catalytic system allowing the sustainable synthesis of benzylidene malononitrile. The influence of the reduction process applied to form the nanoparticle upon the catalyst texture and its performances was extensively examined. After ZIF-8 impregnation with a copper chloride precursor, the reduction of cupric ions into Cu0 nanoparticles was carried out according to two procedures: (i) by soaking the solid into a solution of NaBH4 and (ii) by submitting it to a flow of gaseous H2 at 340 °C. The in-depth physicochemical characterization and comparison of the resulting two types of Cu/ZIF-8 materials reveal significant differences: the reduction with NaBH4 led to the formation of 16 nm sized Cu0 nanoparticles (NP) mainly localized on the external surface of the ZIF-8 crystals together with ZnO nanocrystallites, while the reduction under H2 flow resulted in Cu0 nanoparticles with a mean size of 22 nm embedded within the bulk of ZIF-8 crystals. More, when NaBH4 was used to reduce cupric ions, ZnO particles were highlighted by high-resolution microcospy imaging. Formation of ZnO impurities was confirmed by the photoluminescence analysis of ZIF-8 after NaBH4 treatment. In contrast, ZnO was not detected on ZIF-8 treated with H2. Both types of Cu0 NPs supported on ZIF-8 were found to be active as catalysts toward the aerobic oxidation of benzyl alcohol under moderate temperature (T < 80 °C) and using air as a sustainable O2 source. Benzaldehyde yield of 66% and selectivity superior to 90% were obtained with the Cu/ZIF-8 catalyst prepared under H2 flow after 24 h under these conditions. The same material could be recycled 5 times without loss of activity, unlike the catalysts synthesized with NaBH4, as a result of the leaching of the surface copper NPs over the consecutive catalytic cycles. Finally, the most stable catalyst was successfully implemented in a tandem "one-pot" catalytic system associating benzyl alcohol oxidation and Knoevenagel condensation to synthesize benzylidene malononitrile.

2.
Nanoscale Adv ; 3(3): 823-835, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36133853

RESUMO

We report the first preparation of small gold-nickel (AuNi) bimetallic nanoparticles (<5 nm) supported on titania by the method of galvanic replacement reaction (GRR), evidenced by the replacement of Ni atoms by Au atoms according to the stoichiometry of the reaction. We showed that this preparation method allowed not only the control of the gold and nickel contents in the samples, but also the formation of small bimetallic nanoparticles with strained core-shell structures, as revealed by aberration-corrected scanning transmission electron microscopy in combination with energy-dispersive X-ray spectroscopy mapping. The catalytic characterization by the probe reaction of semi-hydrogenation of butadiene showed that the resulting nickel-based nanocatalysts containing a small amount of gold exhibited higher selectivity to butenes than pure nickel catalysts and a high level of activity, closer to that of pure nickel catalysts than to that of pure gold catalysts. These improved catalytic performances could not be explained by a mere structural model of simple core-shell structure of the nanoparticles. Instead, they could come from the incorporation of Ni within the gold surface and/or from surface lattice relaxation and subsurface misfit defects.

3.
Molecules ; 24(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739418

RESUMO

Two routes of preparation of mesoporous Ni-alumina materials favoring the intermediate formation of nanostructured nickel-aluminate are presented. The first one involves an aluminum containing MOF precursor used as sacrificial template to deposit nickel while the second is based on a one-pot synthesis combined to an EISA method. As shown by a set of complementary techniques, the nickel-aluminate nanospecies formed after calcination are homogeneously distributed within the developed mesoporous alumina matrices whose porous characteristics vary depending on the preparation method. A special attention is paid to electron-microscopy observations using especially STEM imaging with high chemical sensitivity and EDS elemental mapping modes that help visualizing the extremely high nickel dispersion and highlight the strong metal anchoring to the support that persists after reduction. This leads to active nickel nanoparticles particularly stable in the reaction of dry reforming of methane.


Assuntos
Óxido de Alumínio/química , Dióxido de Carbono/química , Nanopartículas Metálicas/química , Metano/química , Catálise , Nanoestruturas/química , Porosidade , Propriedades de Superfície
4.
Chem Commun (Camb) ; 51(17): 3511-4, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25572361

RESUMO

The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.


Assuntos
Cobre/química , Hidróxidos/química , Compostos Organometálicos/química , Estruturas Metalorgânicas , Estrutura Molecular , Compostos Organometálicos/síntese química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
5.
Chem Sci ; 6(10): 5938-5946, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28791092

RESUMO

The coordination replication technique is employed for the direct conversion of a macro- and mesoporous Cu(OH)2-polyacrylamide composite to three-dimensional superstructures consisting of the flexible porous coordination polymers, Cu2(bdc)2(MeOH)2 and Cu2(bdc)2(bpy) (bdc2- = 1,4-benzenedicarboxylate, bpy = 4,4'-bipyridine). Detailed characterization of the replicated systems reveals that the structuralization plays an important role in determining the adsorptive properties of the replicated systems, and that the immobilization of the crystals within a higher-order architecture also affects its structural and dynamic properties. The polyacrylamide polymer is also found to be crucial for maintaining the structuralization of the monolithic systems, and in providing the mechanical robustness required for manual handling. In all, the results discussed here demonstrate a significant expansion in the scope of the coordination replication strategy, and further confirms its utility as a highly versatile platform for the preparation of functional three-dimensional superstructures of porous coordination polymers.

6.
J Mater Chem B ; 3(20): 4205-4212, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32262297

RESUMO

We investigated the encapsulation of bioactive molecules such as l-glutamic acid (Glu) into a series of porous coordination polymers (PCPs) based on aluminum hydroxy dicarboxylates [Al(OH)(L)]n (L = dicarboxylate ligand) and the molecular release therefrom. The use of 2,6-naphthalene dicarboxylate (2,6-ndc), 1,4-benzene dicarboxylate (1,4-bdc) and 1,4-naphthalene dicarboxylate (1,4-ndc) as ligands allows us to systematically tune the pore size and the flexibility of frameworks while keeping the same topology and thus to investigate the effect of those parameters upon both adsorption and release of Glu. We revealed the impact of zwitterionic nature of Glu upon loading efficiency; optimal loading pH was shown to be that for which Glu bears both positive and negative charges. Whereas the loading capacity of PCPs is governed by the pore size ([Al(OH)(2,6-ndc)]n > [Al(OH)(1,4-bdc)]n > [Al(OH)(1,4-ndc)]n), the adsorption isotherm clearly revealed that small or flexible pores induce the stronger Glu-PCP interaction. The release experiments of Glu from PCPs in a physiological media (pH = 7.4, 37 °C) demonstrated the exceptional stabilization of Glu within [Al(OH)(1,4-bdc)]n, compared to those within the other frameworks; whereas the rigid frameworks of [Al(OH)(2,6-ndc)]n and [Al(OH)(1,4-ndc)]n spontaneously released almost the entire Glu contents within 10 h, 70% of Glu loaded within [Al(OH)(1,4-bdc)]n still remained therein over 24 h. Interestingly, the burst release of Glu was triggered by increasing temperature up to 80 °C, at which the framework changed its structure from a closed phase to the open phase.

7.
J Am Chem Soc ; 136(42): 14966-73, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25254320

RESUMO

Porous coordination polymers (PCPs) are an intriguing class of molecular-based materials because of the designability of framework scaffolds, pore sizes and pore surface functionalities. Besides the structural designability at the molecular scale, the structuring of PCPs into mesoscopic/macroscopic morphologies has attracted much attention due to the significance for the practical applications. The structuring of PCPs at the mesoscopic/macroscopic scale has been so far demonstrated by the spatial localization of coordination reactions on the surface of templates or at the phase boundaries. However, these methodologies have never been applied to the fabrication of solid-solution or multivariate metal-organic frameworks (MOFs), in which multiple components are homogeneously mixed. Herein, we demonstrate the structuring of a box-type superstructure comprising of a solid-solution PCP by integrating a bidirectional diffusion of multiple organic ligands into molecular assembly. The parent crystals of [Zn2(ndc)2(bpy)]n were placed in the DMF solution of additional organic component of H2bdc, and the temperature was rapidly elevated up to 80 °C (ndc = 1,4-naphthalenedicarboxylate, bpy = 4,4'-bipyridyl, bdc = 1,4-benzenedicarboxylate). The dissolution of the parent crystals induced the outward diffusion of components; contrariwise, the accumulation of the other organic ligand of H2bdc induced the inward diffusion toward the surface of the parent crystals. This bidirectional diffusion of multiple components spatially localized the recrystallization at the surface of cuboid parent crystals; therefore, the nanocrystals of a solid-solution PCP ([Zn2(bdc)1.5(ndc)0.5(bpy)]n) were organized into a mesoscopic box superstructure. Furthermore, we demonstrated that the box superstructures enhanced the mass transfer kinetics for the separation of hydrocarbons.

8.
Chem Soc Rev ; 43(16): 5700-34, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24811425

RESUMO

The assembly of metal ions with organic ligands through the formation of coordination bonds gives crystalline framework materials, known as metal-organic frameworks (MOFs), which recently emerged as a new class of porous materials. Besides the structural designability of MOFs at the molecular length scale, the researchers in this field very recently made important advances in creating more complex architectures at the mesoscopic/macroscopic scale, in which MOF nanocrystals are used as building units to construct higher-order superstructures. The structuring of MOFs in such a hierarchical order certainly opens a new opportunity to improve the material performance via design of the physical form rather than altering the chemical component. This review highlights these superstructures and their applications by categorizing them into four dimensionalities, zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) superstructures. Because the key issue for structuring of MOFs is to spatially control the nucleation process in desired locations, this review conceptually categorizes the available synthetic methodologies from the viewpoint of the reaction system.

9.
J Am Chem Soc ; 136(13): 4938-44, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24611471

RESUMO

Structural transformability accompanied by molecular accommodation is a distinguished feature of porous coordination polymers (PCPs) among porous materials. Conventional X-ray crystallography allows for the determination of each structural phase emerged during transformation. However, the propagation mechanism of transformation through an entire crystal still remains in question. Here we elucidate the structural nature of the spatial transient state, in which two different but correlated framework structures, an original phase and a deformed phase, simultaneously exist in one crystal. The deformed phase is distinctively generated only at the crystal surface region by introducing large guest molecules, while the remaining part of crystal containing small molecules maintains the original phase. By means of grazing incidence diffraction techniques we determine that the framework is sheared with sharing one edge of the original primitive cubic structure, leading to the formation of crystal domains with four mirror image relationships.


Assuntos
Complexos de Coordenação/química , Polímeros/química , Zinco/química , Cristalografia por Raios X , Modelos Moleculares , Transição de Fase , Porosidade
10.
Adv Mater ; 25(34): 4701-5, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23893365

RESUMO

Thin metal-organic framework (MOF) films are patterned using UV lithography and an imprinting technique. A UV lithographed SU-8 film is imprinted onto a film of MOF powder forming a 2D MOF patterned film. This straightforward method can be applied to most MOF materials, is versatile, cheap, and potentially useful for commercial applications such as lab-on-a-chip type devices.

11.
J Am Chem Soc ; 135(30): 10998-1005, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23672307

RESUMO

Besides conventional approaches for regulating in-coming molecules for gas storage, separation, or molecular sensing, the control of molecular release from the pores is a prerequisite for extending the range of their application, such as drug delivery. Herein, we report the fabrication of a new porous coordination polymer (PCP)-based composite consisting of a gold nanorod (GNR) used as an optical switch and PCP crystals for controlled molecular release using light irradiation as an external trigger. The delicate core-shell structures of this new platform, composed of an individual GNR core and an aluminum-based PCP shell, were achieved by the selective deposition of an aluminum precursor onto the surface of GNR followed by the replication of the precursor into aluminum-based PCPs. The mesoscopic structure was characterized by electron microscopy, energy dispersive X-ray elemental mapping, and sorption experiments. Combination at the nanoscale of the high storage capacity of PCPs with the photothermal properties of GNRs resulted in the implementation of unique motion-induced molecular release, triggered by the highly efficient conversion of optical energy into heat that occurs when the GNRs are irradiated into their plasmon band. Temporal control of the molecular release was demonstrated with anthracene as a guest molecule and fluorescent probe by means of fluorescence spectroscopy.


Assuntos
Ouro/química , Luz , Nanocompostos/química , Nanotubos/química , Processos Fotoquímicos , Polímeros/química , Materiais Biocompatíveis/química , Nanofibras/química , Piperidonas/química , Porosidade
12.
Chem Soc Rev ; 42(9): 4217-55, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23407854

RESUMO

Characterized by a regular porosity in terms of pore size and pore network arrangement, ordered mesoporous solids have attracted increasing interest in the last two decades. These materials have been identified as potential candidates for several applications. However, more environmentally friendly and economical synthesis routes of mesoporous silica materials were found to be necessary in order to develop these applications on an industrial scale. Consequently, ecodesign of ordered mesoporous silica has been considerably developed with the objective of optimizing the chemistry and the processing aspects of the material synthesis. In this review, the main strategies developed with this aim are presented and discussed.

13.
Nat Mater ; 11(8): 717-23, 2012 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-22728321

RESUMO

The spatial organization of porous coordination polymer (PCP) crystals into higher-order structures is critical for their integration into separation systems, heterogeneous catalysts, ion/electron transport and photonic devices. Here, we demonstrate a rapid method to spatially control the nucleation site, leading to the formation of mesoscopic architecture made of PCPs, in both two and three dimensions. Inspired by geological processes, this method relies on the morphological replacement of a shaped sacrificial metal oxide used both as a metal source and as an 'architecture-directing agent' by an analogous PCP architecture. Spatiotemporal harmonization of the metal oxide dissolution and the PCP crystallization allowed the preservation of very fine mineral morphological details of periodic alumina inverse opal structures. The replication of randomly structured alumina aerogels resulted in a PCP architecture with hierarchical porosity in which the hydrophobic micropores of the PCP and the mesopores/macropores inherited from the parent aerogels synergistically enhanced the material's selectivity and mass transfer for water/ethanol separation.

14.
J Am Chem Soc ; 134(6): 2864-7, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22280024

RESUMO

Nanoporous carbon (NPC) is prepared by direct carbonization of Al-based porous coordination polymers (Al-PCP). By applying the appropriate carbonization temperature, both high surface area and large pore volume are realized for the first time. Our NPC shows much higher porosity than other carbon materials (such as activated carbons and mesoporous carbons). This new type of carbon material exhibits superior sensing capabilities toward toxic aromatic substances.

16.
Chem Commun (Camb) ; 47(28): 8124-6, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21691616

RESUMO

We report a new synthetic route for preparation of nanoporous carbon nitride fibers with graphitic carbon nitride polymers, by calcination of Al-based porous coordination polymers (Al-PCPs) with dicyandiamide (DCDA) under a nitrogen atmosphere.


Assuntos
Alumínio/química , Nanofibras/química , Nanotecnologia/métodos , Nitrilas/química , Polímeros/química , Ácidos Carboxílicos/química , Guanidinas/química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA