Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 32(11-12): 1981-1992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36522168

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is highly prevalent in type 2 diabetes mellitus and the elderly, impacting 40% of individuals over 70. Regulation of heterochromatin at the nuclear lamina has been associated with aging and age-dependent metabolic changes. We previously showed that changes at the lamina in aged hepatocytes and laminopathy models lead to redistribution of lamina-associated domains (LADs), opening of repressed chromatin, and up-regulation of genes regulating lipid synthesis and storage, culminating in fatty liver. Here, we test the hypothesis that change in the expression of lamina-associated proteins and nuclear shape leads to redistribution of LADs, followed by altered binding of pioneer factor FOXA2 and by up-regulation of lipid synthesis and storage, culminating in steatosis in younger NAFLD patients (aged 21-51). Changes in nuclear morphology alter LAD partitioning and reduced lamin B1 signal correlate with increased FOXA2 binding before severe steatosis in young mice placed on a western diet. Nuclear shape is also changed in younger NAFLD patients. LADs are redistrubted and lamin B1 signal decreases similarly in mild and severe steatosis. In contrast, FOXA2 binding is similar in normal and NAFLD patients with moderate steatosis and is repositioned only in NAFLD patients with more severe lipid accumulation. Hence, changes at the nuclear lamina reshape FOXA2 binding with progression of the disease. Our results suggest a role for nuclear lamina in etiology of NAFLD, irrespective of aging, with potential for improved stratification of patients and novel treatments aimed at restoring nuclear lamina function.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatócitos/metabolismo , Cromatina/metabolismo , Lipídeos , Fígado/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
2.
Mol Metab ; 53: 101291, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34246806

RESUMO

OBJECTIVE: Type II nuclear hormone receptors, including farnesoid X receptors (FXR), liver X receptors (LXR), and peroxisome proliferator-activated receptors (PPAR), which serve as drug targets for metabolic diseases, are permanently positioned in the nucleus and thought to be bound to DNA regardless of the ligand status. However, recent genome-wide location analysis showed that LXRα and PPARα binding in the liver is largely ligand-dependent. We hypothesized that pioneer factor Foxa2 evicts nucleosomes to enable ligand-dependent binding of type II nuclear receptors and performed genome-wide studies to test this hypothesis. METHODS: ATAC-Seq was used to profile chromatin accessibility; ChIP-Seq was performed to assess transcription factors (Foxa2, FXR, LXRα, and PPARα) binding; and RNA-Seq analysis determined differentially expressed genes in wildtype and Foxa2 mutants treated with a ligand (GW4064 for FXR, GW3965, and T09 for LXRα). RESULTS: We reveal that chromatin accessibility, FXR binding, LXRα occupancy, and ligand-responsive activation of gene expression by FXR and LXRα require Foxa2. Unexpectedly, Foxa2 occupancy is drastically increased when either receptor, FXR or LXRα, is bound by an agonist. In addition, co-immunoprecipitation experiments demonstrate that Foxa2 interacts with either receptor in a ligand-dependent manner, suggesting that Foxa2 and the receptor, bind DNA as an interdependent complex during ligand activation. Furthermore, PPARα binding is induced in Foxa2 mutants treated with FXR and LXR ligands, leading to the activation of PPARα targets. CONCLUSIONS: Our model requires pioneering activity for ligand activation that challenges the existing ligand-independent binding mechanism. We also demonstrate that Foxa2 is required to achieve activation of the proper receptor - one that binds the added ligand - by repressing the activity of a competing receptor.


Assuntos
Fator 3-beta Nuclear de Hepatócito/metabolismo , Receptores X do Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Fator 3-beta Nuclear de Hepatócito/genética , Ligantes , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA