Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Environ Res ; 195: 110876, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33592225

RESUMO

In this study, the role of manganese precursors in mesoporous (meso) MnOx/γ-Al2O3 catalysts was examined systematically for toluene oxidation under ozone at ambient temperature (20 °C). The meso MnOx/γ-Al2O3 catalysts developed with Mn(CH3COO)2, MnCl2, Mn(NO3)2.4H2O and MnSO4 were prepared by an innovative single step solvent-deficient method (SDM); the catalysts were labeled as MnOx/Al2O3(A), MnOx/Al2O3(C), MnOx/Al2O3(N), and MnOx/Al2O3(S), respectively. Among all, MnOx/Al2O3(C) showed superior performance both in toluene removal (95%) as well as ozone decomposition (88%) followed by acetate, nitrate and sulphated precursor MnOx/Al2O3. The superior performance of MnOx/Al2O3(C) in the oxidation of toluene to COx is associated with the ozone decomposition over highly dispersed MnOx in which extremely active oxygen radicals (O2-, O22- and O-) are generated to enhance the oxidation ability of the catalysts greatly. In addition, toluene adsorption over acid support played a vital role in this reaction. Hence, the properties such as optimum Mn3+/Mn4+ ratio, acidic sites, and smaller particle size (≤2 nm) examined by XPS, TPD of NH3, and TEM results are playing vital role in the present study. In summary, the MnOx/Al2O3 (C) catalyst has great potential in environmental applications particularly for the elimination of volatile organic compounds with low loading of manganese developed by SDM.


Assuntos
Ozônio , Catálise , Oxirredução , Solventes , Tolueno
2.
Environ Res ; 191: 110149, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32882239

RESUMO

In this study, red mud (RM), a highly alkaline waste generated from alumina production industries, was used as a catalytic material for both fast copyrolysis of organosolv lignin (OL) and polypropylene (PP) and toluene removal under ozone at room temperature. The RM was pretreated with HCl to investigate the effect of alkalinity. In the catalytic fast copyrolysis of the OL and PP, the acid-treated RM (HRM) produced more aromatics, phenolics, and light olefins (C3 to C5) but less oxygenates and heavy olefins (C6 to C46) than the RM. The difference in pyrolytic performance between the RM and HRM was likely attributed to the concentrated Fe2O3 species in the HRM catalyst. In addition, more efficient toluene removal was observed over MnOx/HRM than over MnOx/RM owing to the large Brunauer-Emmett-Teller surface area, high amounts of Al and Fe, and optimal Mn3+/Mn4+ ratio. This study demonstrates that the RM, an industrial waste, can be reused as an effective catalytic material for not only biofuel production but also pollutant removal.


Assuntos
Ozônio , Catálise , Resíduos Industriais , Lignina , Tolueno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA