Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 604(7906): 571-577, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418676

RESUMO

Chromosome structure in mammals is thought to regulate transcription by modulating three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated loops and topologically associating domains (TADs)1-4. However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. Here, to address this question, we use an assay to position an enhancer at large numbers of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity. A quantitative analysis of hundreds of cell lines reveals that the transcriptional effect of an enhancer depends on its contact probabilities with the promoter through a nonlinear relationship. Mathematical modelling suggests that nonlinearity might arise from transient enhancer-promoter interactions being translated into slower promoter bursting dynamics in individual cells, therefore uncoupling the temporal dynamics of interactions from those of transcription. This uncovers a potential mechanism of how distal enhancers act from large genomic distances, and of how topologically associating domain boundaries block distal enhancers. Finally, we show that enhancer strength also determines absolute transcription levels as well as the sensitivity of a promoter to CTCF-mediated transcriptional insulation. Our measurements establish general principles for the context-dependent role of chromosome structure in long-range transcriptional regulation.


Assuntos
Cromossomos , Elementos Facilitadores Genéticos , Animais , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Genômica , Mamíferos/genética , Regiões Promotoras Genéticas/genética
2.
Commun Biol ; 2: 376, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31633067

RESUMO

Telomere movements during meiotic prophase I facilitate synapsis and recombination of homologous chromosomes. Hereby, chromosome movements depend on the dynamic attachment of meiotic telomeres to the nuclear envelope and generation of forces that actively move the telomeres. In most eukaryotes, forces that move telomeres are generated in the cytoplasm by microtubule-associated motor proteins and transduced into the nucleus through the LINC complexes of the nuclear envelope. Meiotic LINC complexes, in mouse comprised of SUN1/2 and KASH5, selectively localize to the attachment sites of meiotic telomeres. For a better understanding of meiotic telomere dynamics, here we provide quantitative information of telomere attachment sites that we have generated with the aid of electron microscope tomography (EM tomography). Our data on the number, length, width, distribution and relation with microtubules of the reconstructed structures indicate that an average number of 76 LINC complexes would be required to move a telomere attachment site.


Assuntos
Microtúbulos/ultraestrutura , Telômero/ultraestrutura , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Pareamento Cromossômico , Proteínas do Citoesqueleto/metabolismo , Tomografia com Microscopia Eletrônica , Masculino , Meiose , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Proteínas Nucleares/metabolismo , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Testículo/metabolismo , Testículo/ultraestrutura
3.
Nat Struct Mol Biol ; 26(6): 471-480, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133702

RESUMO

Current understanding of chromosome folding is largely reliant on chromosome conformation capture (3C)-based experiments, where chromosomal interactions are detected as ligation products after chromatin crosslinking. To measure chromosome structure in vivo, quantitatively and without crosslinking and ligation, we implemented a modified version of DNA adenine methyltransferase identification (DamID) named DamC, which combines DNA methylation-based detection of chromosomal interactions with next-generation sequencing and biophysical modeling of methylation kinetics. DamC performed in mouse embryonic stem cells provides the first in vivo validation of the existence of topologically associating domains (TADs), CTCF loops and confirms 3C-based measurements of the scaling of contact probabilities. Combining DamC with transposon-mediated genomic engineering shows that new loops can be formed between ectopic and endogenous CTCF sites, which redistributes physical interactions within TADs. DamC provides the first crosslinking- and ligation-free demonstration of the existence of key structural features of chromosomes and provides novel insights into how chromosome structure within TADs can be manipulated.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Metilação de DNA , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Cromatina/química , Cromossomos/química , Cromossomos/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/química , Células-Tronco Embrionárias Murinas/metabolismo , Conformação de Ácido Nucleico , Proteínas Recombinantes de Fusão/metabolismo
4.
Sci Rep ; 7: 41519, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28148968

RESUMO

Lack of high-quality antibodies against transmembrane proteins is a widely recognized hindrance in biomedical and cell biological research. Here we present a robust pipeline for the generation of polyclonal antibodies employing full-length membrane proteins as immunogens to overcome this "antibody bottleneck". We express transmembrane proteins fused to a MISTIC fragment that enhances expression of eukaryotic membrane proteins in E. coli. Purified membrane proteins are used as immunogen for rabbit injection employing standard immunizing protocols. The raised antibodies against membrane proteins of the endoplasmic reticulum and the nuclear envelope, which we use as test cases, function in a wide range of applications and are superior to ones produced against soluble domains as immunogens.


Assuntos
Anticorpos/metabolismo , Antígenos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Calnexina/metabolismo , Cromatografia de Afinidade , Soros Imunes/metabolismo , Membrana Nuclear/metabolismo , Solubilidade , Proteínas de Xenopus/metabolismo , Xenopus laevis
5.
Cytogenet Genome Res ; 144(4): 299-305, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25831978

RESUMO

During the first meiotic prophase, chromosome synapsis is mediated by the synaptonemal complex (SC), an evolutionarily conserved meiosis-specific structure. In mammals, 7 SC protein components have been identified so far. Despite some controversy in the past, we have shown that SC proteins are ancient in metazoans and very likely formed an ancestral SC structure in the ancestor of metazoans. Protein components SYCP1, SYCP3, SYCE2, and TEX12 were identified in basal-branching metazoans, while other components (SYCE1 and SYCE3) are more recent elements. However, the evolutionary history of mammalian SYCP2 is not known. Here, we investigated this aspect with the aid of bioinformatic tools as well as with RNA and protein expression analysis. We conclude that SYCP2 belongs to the group of ancient SC proteins that was already present in the common ancestor of metazoans more than 500 million years ago.


Assuntos
Hydra/metabolismo , Mamíferos/metabolismo , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo , Testículo/metabolismo , Animais , Biologia Computacional/métodos , Evolução Molecular , Hydra/anatomia & histologia , Hydra/classificação , Hydra/genética , Masculino , Mamíferos/anatomia & histologia , Mamíferos/genética , Especificidade de Órgãos , Filogenia , Homologia de Sequência de Aminoácidos
6.
J Cell Sci ; 127(Pt 4): 908-21, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24363447

RESUMO

Nuclear pore complexes (NPCs) are the gateways for nucleocytoplasmic exchange. The ordered assembly of these huge complexes from several hundred individual components into an intricate protein interaction network which deforms the two membranes of the nuclear envelope into a pore is only rudimentarily understood. Here, we show that the interaction between Nup53 and the integral pore membrane protein Ndc1 is essential for vertebrate NPC assembly. The Ndc1 binding site on Nup53 overlaps with a region that induces membrane bending and is specifically required to modulate this activity, suggesting that the membrane-deforming capability of Nup53 is adjusted during the NPC assembly process. We further demonstrate that the interaction of Nup53 and Nup155 has a crucial role in NPC formation as the main determinant of recruitment of Nup155 to the assembling pore. Overall, our results pinpoint the diversity of interaction modes accomplished by Nup53, highlighting this protein as an essential link between the pore membrane and the NPC, and as a crucial factor in the formation of the pore membrane.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Sítios de Ligação , Sistema Livre de Células , Células HeLa , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas de Xenopus/química , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA