Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 806(Pt 3): 150396, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627114

RESUMO

Rock weathering and biological cycling hold the development and sustainability of continental ecosystems, yet the interdependence of macro- and micro-nutrients biogeochemical cycles and their implications for ecosystem functioning remains unclear, despite being of particular importance in the context of global changes. This study focuses on the stocks, fluxes and processes constituting the biogeochemical cycle of boron. Vegetation, soils and solutions were monitored for a full year in a temperate beech forest developed on calcareous soil. Despite an overwhelmingly large B pool in soils, this study points to limited influence of weathering emphasizing the importance of vegetation cycling on this site. The biological imprint on the B cycle is marked by (1) a strong 11B enrichment of solutions compared to the mineral source and (2) systematic correlations observed between B and other strongly recycled elements in all water samples. B isotopes are fractionated within the beech stand with higher values in leaves (23.5‰) and lower in fine roots (-11.7‰), suggesting that the light 10B isotope is preferentially assimilated during plant growth. B isotopic data are consistent with a Rayleigh-like behaviour during xylem transfer leading to an 11B enrichment in the higher parts of the trees, putting internal B transfer as the main driver of the large range of isotopic compositions between plant tissues. B apparent isotopic fractionations are observed in the annually produced biomass and total beech stand, albeit with different values: αxylem-biomass = 0.980 ± 0.009 and 0.990 ± 0.002, respectively, suggesting 11B transfer from old to new tissue. The developed model also points to an isotopic fractionation factor during B uptake much higher than previously evaluated (0.979 < αuptake < 0.994). Overall, this study demonstrates that B isotopes appear as a promising tracer of soil-plant interactions with particular emphasis on tree adaptation to B bioavailability in soil.


Assuntos
Fagus , Ecossistema , Florestas , Solo , Árvores
2.
J Hazard Mater ; 335: 75-83, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28432972

RESUMO

Uranium ore waste has led to soil contamination that may affect both environmental and soil health. To analyze the risk of metal transfer, metal bioavailability must be estimated by measuring biological parameters. Kinetic studies allow taking into account the dynamic mechanisms of bioavailability, as well as the steady state concentration in organisms necessary to take into account for relevant risk assessment. In this way, this work aims to model the snail accumulation and excretion kinetics of uranium (U), cesium (Cs) and thorium (Th). Results indicate an absence of Cs and Th accumulation showing the low bioavailability of these two elements and a strong uranium accumulation in snails related to the levels of soil contamination. During the depuration phase, most of the uranium ingested was excreted by the snails. After removing the source of uranium by soil remediation, continued snails excretion of accumulated uranium would lead to the return of their initial internal concentration, thus the potential trophic transfer of this hazardous element would stop.


Assuntos
Césio/metabolismo , Caracois Helix/metabolismo , Modelos Biológicos , Poluentes Radioativos do Solo/metabolismo , Tório/metabolismo , Urânio/metabolismo , Animais , Biodegradação Ambiental , Disponibilidade Biológica , Césio/isolamento & purificação , França , Poluentes Radioativos do Solo/isolamento & purificação , Tório/isolamento & purificação , Urânio/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA