Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Mol Cell Cardiol ; 180: 44-57, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37127261

RESUMO

We compared commonly used BAPTA-derived chemical Ca2+ dyes (fura2, Fluo-4, and Rhod-2) with a newer genetically encoded indicator (R-GECO) in single cell models of the heart. We assessed their performance and effects on cardiomyocyte contractility, determining fluorescent signal-to-noise ratios and sarcomere shortening in primary ventricular myocytes from adult mouse and guinea pig, and in human iPSC-derived cardiomyocytes. Chemical Ca2+ dyes displayed dose-dependent contractile impairment in all cell types, and we observed a negative correlation between contraction and fluorescence signal-to-noise ratio, particularly for fura2 and Fluo-4. R-GECO had no effect on sarcomere shortening. BAPTA-based dyes, but not R-GECO, inhibited in vitro acto-myosin ATPase activity. The presence of fura2 accentuated or diminished changes in contractility and Ca2+ handling caused by small molecule modulators of contractility and intracellular ionic homeostasis (mavacamten, levosimendan, and flecainide), but this was not observed when using R-GECO in adult guinea pig left ventricular cardiomyocytes. Ca2+ handling studies are necessary for cardiotoxicity assessments of small molecules intended for clinical use. Caution should be exercised when interpreting small molecule studies assessing contractile effects and Ca2+ transients derived from BAPTA-like chemical Ca2+ dyes in cellular assays, a common platform for cardiac toxicology testing and mechanistic investigation of cardiac disease physiology and treatment.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Cobaias , Humanos , Camundongos , Cálcio/metabolismo , Corantes/metabolismo , Corantes/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Suínos
2.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982903

RESUMO

The substitution for Arg168His (R168H) in γ-tropomyosin (TPM3 gene, Tpm3.12 isoform) is associated with congenital muscle fiber type disproportion (CFTD) and muscle weakness. It is still unclear what molecular mechanisms underlie the muscle dysfunction seen in CFTD. The aim of this work was to study the effect of the R168H mutation in Tpm3.12 on the critical conformational changes that myosin, actin, troponin, and tropomyosin undergo during the ATPase cycle. We used polarized fluorescence microscopy and ghost muscle fibers containing regulated thin filaments and myosin heads (myosin subfragment-1) modified with the 1,5-IAEDANS fluorescent probe. Analysis of the data obtained revealed that a sequential interdependent conformational-functional rearrangement of tropomyosin, actin and myosin heads takes place when modeling the ATPase cycle in the presence of wild-type tropomyosin. A multistep shift of the tropomyosin strands from the outer to the inner domain of actin occurs during the transition from weak to strong binding of myosin to actin. Each tropomyosin position determines the corresponding balance between switched-on and switched-off actin monomers and between the strongly and weakly bound myosin heads. At low Ca2+, the R168H mutation was shown to switch some extra actin monomers on and increase the persistence length of tropomyosin, demonstrating the freezing of the R168HTpm strands close to the open position and disruption of the regulatory function of troponin. Instead of reducing the formation of strong bonds between myosin heads and F-actin, troponin activated it. However, at high Ca2+, troponin decreased the amount of strongly bound myosin heads instead of promoting their formation. Abnormally high sensitivity of thin filaments to Ca2+, inhibition of muscle fiber relaxation due to the appearance of the myosin heads strongly associated with F-actin, and distinct activation of the contractile system at submaximal concentrations of Ca2+ can lead to muscle inefficiency and weakness. Modulators of troponin (tirasemtiv and epigallocatechin-3-gallate) and myosin (omecamtiv mecarbil and 2,3-butanedione monoxime) have been shown to more or less attenuate the negative effects of the tropomyosin R168H mutant. Tirasemtiv and epigallocatechin-3-gallate may be used to prevent muscle dysfunction.


Assuntos
Actinas , Miopatias Congênitas Estruturais , Humanos , Actinas/metabolismo , Tropomiosina/metabolismo , Miosinas/metabolismo , Mutação , Adenosina Trifosfatases/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miopatias Congênitas Estruturais/metabolismo , Troponina/genética , Troponina/metabolismo , Cálcio/metabolismo
4.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409335

RESUMO

The understanding of how genetic information may be inherited through generations was established by Gregor Mendel in the 1860s when he developed the fundamental principles of inheritance. The science of genetics, however, began to flourish only during the mid-1940s when DNA was identified as the carrier of genetic information. The world has since then witnessed rapid development of genetic technologies, with the latest being genome-editing tools, which have revolutionized fields from medicine to agriculture. This review walks through the historical timeline of genetics research and deliberates how this discipline might furnish a sustainable future for humanity.


Assuntos
Hereditariedade , Bases de Dados Genéticas , Padrões de Herança
5.
J Mol Cell Cardiol Plus ; 1: 100007, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37159677

RESUMO

Background: Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disorder with patients typically showing heterozygous inheritance of a pathogenic variant in a gene encoding a contractile protein. Here, we study the contractile effects of a rare homozygous mutation using explanted tissue and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to gain insight into how the balance between mutant and WT protein expression affects cardiomyocyte function. Methods: Force measurements were performed in cardiomyocytes isolated from a HCM patient carrying a homozygous troponin T mutation (cTnT-K280N) and healthy donors. To discriminate between mutation-mediated and phosphorylation-related effects on Ca2+-sensitivity, cardiomyocytes were treated with alkaline phosphatase (AP) or protein kinase A (PKA). Troponin exchange experiments characterized the relation between mutant levels and myofilament function. To define mutation-mediated effects on Ca2+-dynamics we used CRISPR/Cas9 to generate hiPSC-CMs harbouring heterozygous and homozygous TnT-K280N mutations. Ca2+-transient and cell shortening experiments compared these lines against isogenic controls. Results: Myofilament Ca2+-sensitivity was higher in homozygous cTnT-K280N cardiomyocytes and was not corrected by AP- and PKA-treatment. In cTnT-K280N cells exchanged with cTnT-WT, a low level (14%) of cTnT-K280N mutation elevated Ca2+-sensitivity. Similarly, exchange of donor cells with 45 ± 2% cTnT-K280N increased Ca2+-sensitivity and was not corrected by PKA. cTnT-K280N hiPSC-CMs show elevated diastolic Ca2+ and increases in cell shortening. Impaired cardiomyocyte relaxation was only evident in homozygous cTnT-K280N hiPSC-CMs. Conclusions: The cTnT-K280N mutation increases myofilament Ca2+-sensitivity, elevates diastolic Ca2+, enhances contractility and impairs cellular relaxation. A low level (14%) of the cTnT-K280N sensitizes myofilaments to Ca2+, a universal finding of human HCM.

6.
Int J Mol Sci ; 22(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204776

RESUMO

Point mutations in the genes encoding the skeletal muscle isoforms of tropomyosin can cause a range of muscle diseases. The amino acid substitution of Arg for Pro residue in the 90th position (R90P) in γ-tropomyosin (Tpm3.12) is associated with congenital fiber type disproportion and muscle weakness. The molecular mechanisms underlying muscle dysfunction in this disease remain unclear. Here, we observed that this mutation causes an abnormally high Ca2+-sensitivity of myofilaments in vitro and in muscle fibers. To determine the critical conformational changes that myosin, actin, and tropomyosin undergo during the ATPase cycle and the alterations in these changes caused by R90P replacement in Tpm3.12, we used polarized fluorimetry. It was shown that the R90P mutation inhibits the ability of tropomyosin to shift towards the outer domains of actin, which is accompanied by the almost complete depression of troponin's ability to switch actin monomers off and to reduce the amount of the myosin heads weakly bound to F-actin at a low Ca2+. These changes in the behavior of tropomyosin and the troponin-tropomyosin complex, as well as in the balance of strongly and weakly bound myosin heads in the ATPase cycle may underlie the occurrence of both abnormally high Ca2+-sensitivity and muscle weakness. BDM, an inhibitor of myosin ATPase activity, and W7, a troponin C antagonist, restore the ability of tropomyosin for Ca2+-dependent movement and the ability of the troponin-tropomyosin complex to switch actin monomers off, demonstrating a weakening of the damaging effect of the R90P mutation on muscle contractility.


Assuntos
Contração Muscular/genética , Mutação/genética , Oximas/farmacologia , Sulfonamidas/farmacologia , Tropomiosina/genética , Actinas/metabolismo , Animais , Cálcio/metabolismo , Contração Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Miosinas/metabolismo , Coelhos , Troponina/metabolismo
8.
Biology (Basel) ; 9(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207727

RESUMO

Recent advances have made pluripotent stem cell (PSC)-derived cardiomyocytes an attractive option to model both normal and diseased cardiac function at the single-cell level. However, in vitro differentiation yields heterogeneous populations of cardiomyocytes and other cell types, potentially confounding phenotypic analyses. Fluorescent PSC-derived cardiomyocyte reporter systems allow specific cell lineages to be labelled, facilitating cell isolation for downstream applications including drug testing, disease modelling and cardiac regeneration. In this review, the different genetic strategies used to generate such reporter lines are presented with an emphasis on their relative technical advantages and disadvantages. Next, we explore how the fluorescent reporter lines have provided insights into cardiac development and cardiomyocyte physiology. Finally, we discuss how exciting new approaches using PSC-derived cardiomyocyte reporter lines are contributing to progress in cardiac cell therapy with respect to both graft adaptation and clinical safety.

9.
Nature ; 587(7834): 460-465, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33149301

RESUMO

Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation.


Assuntos
Arritmias Cardíacas/metabolismo , Calcitonina/metabolismo , Fibrinogênio/biossíntese , Átrios do Coração/metabolismo , Miocárdio/metabolismo , Comunicação Parácrina , Animais , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Fibrilação Atrial , Colágeno Tipo I/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose/metabolismo , Fibrose/patologia , Átrios do Coração/citologia , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Masculino , Camundongos , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Receptores da Calcitonina/metabolismo
10.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066566

RESUMO

We have used the technique of polarized microfluorimetry to obtain new insight into the pathogenesis of skeletal muscle disease caused by the Gln147Pro substitution in ß-tropomyosin (Tpm2.2). The spatial rearrangements of actin, myosin and tropomyosin in the single muscle fiber containing reconstituted thin filaments were studied during simulation of several stages of ATP hydrolysis cycle. The angular orientation of the fluorescence probes bound to tropomyosin was found to be changed by the substitution and was characteristic for a shift of tropomyosin strands closer to the inner actin domains. It was observed both in the absence and in the presence of troponin, Ca2+ and myosin heads at all simulated stages of the ATPase cycle. The mutant showed higher flexibility. Moreover, the Gln147Pro substitution disrupted the myosin-induced displacement of tropomyosin over actin. The irregular positioning of the mutant tropomyosin caused premature activation of actin monomers and a tendency to increase the number of myosin cross-bridges in a state of strong binding with actin at low Ca2+.


Assuntos
Substituição de Aminoácidos , Contração Muscular , Miotonia Congênita/genética , Tropomiosina/química , Actinas/química , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/química , Cálcio/metabolismo , Células Cultivadas , Humanos , Simulação de Dinâmica Molecular , Miosinas/química , Miosinas/metabolismo , Domínios Proteicos , Coelhos , Tropomiosina/genética , Tropomiosina/metabolismo , Troponina/química , Troponina/metabolismo
11.
Am J Physiol Heart Circ Physiol ; 319(2): H306-H319, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32618513

RESUMO

Dilated cardiomyopathy (DCM) is clinically characterized by dilated ventricular cavities and reduced ejection fraction, leading to heart failure and increased thromboembolic risk. Mutations in thin-filament regulatory proteins can cause DCM and have been shown in vitro to reduce contractility and myofilament Ca2+-affinity. In this work we have studied the functional consequences of mutations in cardiac troponin T (R131W), cardiac troponin I (K36Q) and α-tropomyosin (E40K) using adenovirally transduced isolated guinea pig left ventricular cardiomyocytes. We find significantly reduced fractional shortening with reduced systolic Ca2+. Contraction and Ca2+ reuptake times were slowed, which contrast with some findings in murine models of myofilament Ca2+ desensitization. We also observe increased sarcoplasmic reticulum (SR) Ca2+ load and smaller fractional SR Ca2+ release. This corresponds to a reduction in SR Ca2+-ATPase activity and increase in sodium-calcium exchanger activity. We also observe dephosphorylation and nuclear translocation of the nuclear factor of activated T cells (NFAT), with concordant RAC-α-serine/threonine protein kinase (Akt) phosphorylation but no change to extracellular signal-regulated kinase activation in chronically paced cardiomyocytes expressing DCM mutations. These changes in Ca2+ handling and signaling are common to all three mutations, indicating an analogous pathway of disease pathogenesis in thin-filament sarcomeric DCM. Previous work has shown that changes to myofilament Ca2+ sensitivity caused by DCM mutations are qualitatively opposite from hypertrophic cardiomyopathy (HCM) mutations in the same genes. However, we find several common pathways such as increased relaxation times and NFAT activation that are also hallmarks of HCM. This suggests more complex intracellular signaling underpinning DCM, driven by the primary mutation.NEW & NOTEWORTHY Dilated cardiomyopathy (DCM) is a frequently occurring cardiac disorder with a degree of genetic inheritance. We have found that DCM mutations in proteins that regulate the contractile machinery cause alterations to contraction, calcium-handling, and some new signaling pathways that provide stimuli for disease development. We have used guinea pig cells that recapitulate human calcium-handling and introduced the mutations using adenovirus gene transduction to look at the initial triggers of disease before remodeling.


Assuntos
Sinalização do Cálcio , Cardiomiopatia Dilatada/genética , Proteínas dos Microfilamentos/genética , Mutação , Contração Miocárdica , Miócitos Cardíacos/enzimologia , Fatores de Transcrição NFATC/metabolismo , Proteína Oncogênica v-akt/metabolismo , Função Ventricular Esquerda , Animais , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Células Cultivadas , Predisposição Genética para Doença , Cobaias , Masculino , Proteínas dos Microfilamentos/metabolismo , Fenótipo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo , Troponina I/genética , Troponina I/metabolismo , Troponina T/genética , Troponina T/metabolismo
12.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580284

RESUMO

Substitution of Ala for Glu residue in position 173 of γ-tropomyosin (Tpm3.12) is associated with muscle weakness. Here we observe that this mutation increases myofilament Ca2+-sensitivity and inhibits in vitro actin-activated ATPase activity of myosin subfragment-1 at high Ca2+. In order to determine the critical conformational changes in myosin, actin and tropomyosin caused by the mutation, we used the technique of polarized fluorimetry. It was found that this mutation changes the spatial arrangement of actin monomers and myosin heads, and the position of the mutant tropomyosin on the thin filaments in muscle fibres at various mimicked stages of the ATPase cycle. At low Ca2+ the E173A mutant tropomyosin shifts towards the inner domains of actin at all stages of the cycle, and this is accompanied by an increase in the number of switched-on actin monomers and myosin heads strongly bound to F-actin even at relaxation. Contrarily, at high Ca2+ the amount of the strongly bound myosin heads slightly decreases. These changes in the balance of the strongly bound myosin heads in the ATPase cycle may underlie the occurrence of muscle weakness. W7, an inhibitor of troponin Ca2+-sensitivity, restores the increase in the number of myosin heads strongly bound to F-actin at high Ca2+ and stops their strong binding at relaxation, suggesting the possibility of using Ca2+-desensitizers to reduce the damaging effect of the E173A mutation on muscle fibre contractility.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Debilidade Muscular/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Mutação , Sulfonamidas/farmacologia , Tropomiosina/genética , Animais , Debilidade Muscular/etiologia , Debilidade Muscular/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Coelhos , Vasodilatadores/farmacologia
13.
Am J Physiol Heart Circ Physiol ; 318(3): H715-H722, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32083971

RESUMO

Thin filament hypertrophic cardiomyopathy (HCM) mutations increase myofilament Ca2+ sensitivity and alter Ca2+ handling and buffering. The myosin inhibitor mavacamten reverses the increased contractility caused by HCM thick filament mutations, and we here test its effect on HCM thin filament mutations where the mode of action is not known. Mavacamten (250 nM) partially reversed the increased Ca2+ sensitivity caused by HCM mutations Cardiac troponin T (cTnT) R92Q, and cardiac troponin I (cTnI) R145G in in vitro ATPase assays. The effect of mavacamten was also analyzed in cardiomyocyte models of cTnT R92Q and cTnI R145G containing cytoplasmic and myofilament specific Ca2+ sensors. While mavacamten rescued the hypercontracted basal sarcomere length, the reduced fractional shortening did not improve with mavacamten. Both mutations caused an increase in peak systolic Ca2+ detected at the myofilament, and this was completely rescued by 250 nM mavacamten. Systolic Ca2+ detected by the cytoplasmic sensor was also reduced by mavacamten treatment, although only R145G increased cytoplasmic Ca2+. There was also a reversal of Ca2+ decay time prolongation caused by both mutations at the myofilament but not in the cytoplasm. We thus show that mavacamten reverses some of the Ca2+-sensitive molecular and cellular changes caused by the HCM mutations, particularly altered Ca2+ flux at the myofilament. The reduction of peak systolic Ca2+ as a consequence of mavacamten treatment represents a novel mechanism by which the compound is able to reduce contractility, working synergistically with its direct effect on the myosin motor.NEW & NOTEWORTHY Mavacamten, a myosin inhibitor, is currently in phase-3 clinical trials as a pharmacotherapy for hypertrophic cardiomyopathy (HCM). Its efficacy in HCM caused by mutations in thin filament proteins is not known. We show in reductionist and cellular models that mavacamten can rescue the effects of thin filament mutations on calcium sensitivity and calcium handling although it only partially rescues the contractile cellular phenotype and, in some cases, exacerbates the effect of the mutation.


Assuntos
Benzilaminas/farmacologia , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Sarcômeros/efeitos dos fármacos , Uracila/análogos & derivados , Animais , Cardiomiopatia Hipertrófica/genética , Camundongos , Mutação , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Troponina T/genética , Troponina T/metabolismo , Uracila/farmacologia
14.
Circulation ; 141(10): 828-842, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-31983222

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is caused by pathogenic variants in sarcomere protein genes that evoke hypercontractility, poor relaxation, and increased energy consumption by the heart and increased patient risks for arrhythmias and heart failure. Recent studies show that pathogenic missense variants in myosin, the molecular motor of the sarcomere, are clustered in residues that participate in dynamic conformational states of sarcomere proteins. We hypothesized that these conformations are essential to adapt contractile output for energy conservation and that pathophysiology of HCM results from destabilization of these conformations. METHODS: We assayed myosin ATP binding to define the proportion of myosins in the super relaxed state (SRX) conformation or the disordered relaxed state (DRX) conformation in healthy rodent and human hearts, at baseline and in response to reduced hemodynamic demands of hibernation or pathogenic HCM variants. To determine the relationships between myosin conformations, sarcomere function, and cell biology, we assessed contractility, relaxation, and cardiomyocyte morphology and metabolism, with and without an allosteric modulator of myosin ATPase activity. We then tested whether the positions of myosin variants of unknown clinical significance that were identified in patients with HCM, predicted functional consequences and associations with heart failure and arrhythmias. RESULTS: Myosins undergo physiological shifts between the SRX conformation that maximizes energy conservation and the DRX conformation that enables cross-bridge formation with greater ATP consumption. Systemic hemodynamic requirements, pharmacological modulators of myosin, and pathogenic myosin missense mutations influenced the proportions of these conformations. Hibernation increased the proportion of myosins in the SRX conformation, whereas pathogenic variants destabilized these and increased the proportion of myosins in the DRX conformation, which enhanced cardiomyocyte contractility, but impaired relaxation and evoked hypertrophic remodeling with increased energetic stress. Using structural locations to stratify variants of unknown clinical significance, we showed that the variants that destabilized myosin conformations were associated with higher rates of heart failure and arrhythmias in patients with HCM. CONCLUSIONS: Myosin conformations establish work-energy equipoise that is essential for life-long cellular homeostasis and heart function. Destabilization of myosin energy-conserving states promotes contractile abnormalities, morphological and metabolic remodeling, and adverse clinical outcomes in patients with HCM. Therapeutic restabilization corrects cellular contractile and metabolic phenotypes and may limit these adverse clinical outcomes in patients with HCM.


Assuntos
Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/metabolismo , Mutação de Sentido Incorreto/genética , Miócitos Cardíacos/fisiologia , Cadeias Pesadas de Miosina/genética , Sarcômeros/metabolismo , Adenosina Trifosfatases , Animais , Cardiomiopatia Hipertrófica/genética , Células Cultivadas , Metabolismo Energético , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Simulação de Dinâmica Molecular , Relaxamento Muscular , Contração Miocárdica , Miócitos Cardíacos/citologia , Conformação Proteica , Sarcômeros/genética
15.
Biochem Biophys Res Commun ; 523(1): 258-262, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31864708

RESUMO

Ghost muscle fibres reconstituted with myosin heads labeled with the fluorescent probe 1,5-IAEDANS were used for analysis of muscle fibre dysfunction associated with the R133W mutation in ß-tropomyosin (Tpm2.2). By using polarized microscopy, we showed that at high Ca2+ the R133W mutation in both αß-Tpm heterodimers and ßß-Tpm homodimers decreases the amount of the myosin heads strongly bound to F-actin and the number of switched-on actin monomers, with this effect being stronger for ßß-Tpm. This mutation also inhibits the shifting of the R133W-Tpm strands towards the open position and the efficiency of the cross-bridge work. At low Ca2+, the amount of the strongly bound myosin heads is lower for R133W-Tpms than for WT-Tpms which may contribute to a low myofilament Ca2+-sensitivity of the R133W-Tpms. It is concluded that freezing of the mutant αß- or ßß-Tpm close to the blocked position inhibits the strong binding of the cross-bridges and the switching on of actin monomers which may be the reason for muscle weakness associated with the R133W mutation in ß-tropomyosin. The use of reagents that activate myosin may be appropriate to restore muscle function in patients with the R133W mutation.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Mutação , Tropomiosina/genética , Animais , Cálcio/metabolismo , Masculino , Debilidade Muscular/genética , Debilidade Muscular/fisiopatologia , Miopatias da Nemalina/genética , Miopatias da Nemalina/fisiopatologia , Coelhos , Tropomiosina/metabolismo
16.
EMBO Mol Med ; 11(12): e11115, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31680489

RESUMO

Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease accompanied by structural and contractile alterations. We identified a rare c.740C>T (p.T247M) mutation in ACTN2, encoding α-actinin 2 in a HCM patient, who presented with left ventricular hypertrophy, outflow tract obstruction, and atrial fibrillation. We generated patient-derived human-induced pluripotent stem cells (hiPSCs) and show that hiPSC-derived cardiomyocytes and engineered heart tissues recapitulated several hallmarks of HCM, such as hypertrophy, myofibrillar disarray, hypercontractility, impaired relaxation, and higher myofilament Ca2+ sensitivity, and also prolonged action potential duration and enhanced L-type Ca2+ current. The L-type Ca2+ channel blocker diltiazem reduced force amplitude, relaxation, and action potential duration to a greater extent in HCM than in isogenic control. We translated our findings to patient care and showed that diltiazem application ameliorated the prolonged QTc interval in HCM-affected son and sister of the index patient. These data provide evidence for this ACTN2 mutation to be disease-causing in cardiomyocytes, guiding clinical therapy in this HCM family. This study may serve as a proof-of-principle for the use of hiPSC for personalized treatment of cardiomyopathies.


Assuntos
Actinina/genética , Cardiomiopatia Hipertrófica/genética , Animais , Modelos Animais de Doenças , Humanos , Síndrome do QT Longo/genética , Mutação , Medicina de Precisão
17.
Biochem Biophys Res Commun ; 515(2): 372-377, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31155291

RESUMO

Substitution of Ala for Thr residue in 155th position in γ-tropomyosin (Tpm3.12) is associated with muscle weakness. To understand the mechanisms of this defect, we studied the Ca2+-sensitivity of thin filaments in solution and multistep changes in mobility and spatial arrangement of actin, Tpm, and myosin heads during the ATPase cycle in reconstituted muscle fibres, using the polarized fluorescence microscopy. It was shown that the Ala155Thr (A155T) mutation increased the Ca2+-sensitivity of the thin filaments in solution. In the absence of the myosin heads in the muscle fibres, the mutation did not alter the ability of troponin to switch the thin filaments on and off at high and low Ca2+, respectively. However, upon the binding of myosin heads to the thin filaments at low Ca2+, the mutant Tpm was found to be markedly closer to the open position, than the wild-type Tpm. In the presence of the mutant Tpm, switching on of actin monomers and formation of the strong-binding state of the myosin heads were observed at low Ca2+, which indicated a higher myofilament Ca2+-sensitivity. The mutation decreased the amount of myosin heads bound strongly to actin at high Ca2+ and increased the number of these heads at relaxation. It is suggested that direct binding of myosin to Tpm may be one оf the reasons for muscle weakness associated with the A155T mutation. The use of reagents that decrease the Ca2+-sensitivity of the troponin complex may not be adequate to restore muscle function in patients with the A155T mutation.


Assuntos
Cálcio/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/fisiopatologia , Tropomiosina/genética , Tropomiosina/fisiologia , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Substituição de Aminoácidos , Animais , Polarização de Fluorescência , Humanos , Técnicas In Vitro , Masculino , Debilidade Muscular/etiologia , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia , Mutação de Sentido Incorreto , Miofibrilas/metabolismo , Subfragmentos de Miosina/metabolismo , Coelhos , Tropomiosina/química , Troponina/metabolismo
19.
Circ Res ; 124(8): 1228-1239, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30732532

RESUMO

RATIONALE: Subcellular Ca2+ indicators have yet to be developed for the myofilament where disease mutation or small molecules may alter contractility through myofilament Ca2+ sensitivity. Here, we develop and characterize genetically encoded Ca2+ indicators restricted to the myofilament to directly visualize Ca2+ changes in the sarcomere. OBJECTIVE: To produce and validate myofilament-restricted Ca2+ imaging probes in an adenoviral transduction adult cardiomyocyte model using drugs that alter myofilament function (MYK-461, omecamtiv mecarbil, and levosimendan) or following cotransduction of 2 established hypertrophic cardiomyopathy disease-causing mutants (cTnT [Troponin T] R92Q and cTnI [Troponin I] R145G) that alter myofilament Ca2+ handling. METHODS AND RESULTS: When expressed in adult ventricular cardiomyocytes RGECO-TnT (Troponin T)/TnI (Troponin I) sensors localize correctly to the sarcomere without contractile impairment. Both sensors report cyclical changes in fluorescence in paced cardiomyocytes with reduced Ca2+ on and increased Ca2+ off rates compared with unconjugated RGECO. RGECO-TnT/TnI revealed changes to localized Ca2+ handling conferred by MYK-461 and levosimendan, including an increase in Ca2+ binding rates with both levosimendan and MYK-461 not detected by an unrestricted protein sensor. Coadenoviral transduction of RGECO-TnT/TnI with hypertrophic cardiomyopathy causing thin filament mutants showed that the mutations increase myofilament [Ca2+] in systole, lengthen time to peak systolic [Ca2+], and delay [Ca2+] release. This contrasts with the effect of the same mutations on cytoplasmic Ca2+, when measured using unrestricted RGECO where changes to peak systolic Ca2+ are inconsistent between the 2 mutations. These data contrast with previous findings using chemical dyes that show no alteration of [Ca2+] transient amplitude or time to peak Ca2+. CONCLUSIONS: RGECO-TnT/TnI are functionally equivalent. They visualize Ca2+ within the myofilament and reveal unrecognized aspects of small molecule and disease-associated mutations in living cells.


Assuntos
Cálcio/metabolismo , Cardiomiopatia Hipertrófica/genética , Mutação , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Sarcômeros/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Adenoviridae , Animais , Benzilaminas/farmacologia , Cardiomiopatia Hipertrófica/metabolismo , Cobaias , Técnicas In Vitro , Masculino , Miofibrilas/efeitos dos fármacos , Miosinas/efeitos dos fármacos , Miosinas/metabolismo , Simendana/farmacologia , Transdução Genética/métodos , Troponina I/genética , Troponina I/metabolismo , Troponina T/genética , Troponina T/metabolismo , Uracila/análogos & derivados , Uracila/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia
20.
Sci Transl Med ; 11(476)2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674652

RESUMO

The mechanisms by which truncating mutations in MYBPC3 (encoding cardiac myosin-binding protein C; cMyBPC) or myosin missense mutations cause hypercontractility and poor relaxation in hypertrophic cardiomyopathy (HCM) are incompletely understood. Using genetic and biochemical approaches, we explored how depletion of cMyBPC altered sarcomere function. We demonstrated that stepwise loss of cMyBPC resulted in reciprocal augmentation of myosin contractility. Direct attenuation of myosin function, via a damaging missense variant (F764L) that causes dilated cardiomyopathy (DCM), normalized the increased contractility from cMyBPC depletion. Depletion of cMyBPC also altered dynamic myosin conformations during relaxation, enhancing the myosin state that enables ATP hydrolysis and thin filament interactions while reducing the super relaxed conformation associated with energy conservation. MYK-461, a pharmacologic inhibitor of myosin ATPase, rescued relaxation deficits and restored normal contractility in mouse and human cardiomyocytes with MYBPC3 mutations. These data define dosage-dependent effects of cMyBPC on myosin that occur across the cardiac cycle as the pathophysiologic mechanisms by which MYBPC3 truncations cause HCM. Therapeutic strategies to attenuate cMyBPC activity may rescue depressed cardiac contractility in patients with DCM, whereas inhibiting myosin by MYK-461 should benefit the substantial proportion of patients with HCM with MYBPC3 mutations.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Mutação/genética , Miosinas/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Cardiomiopatia Hipertrófica/fisiopatologia , Modelos Animais de Doenças , Haploinsuficiência , Humanos , Camundongos , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Fenótipo , ortoaminobenzoatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA