Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(12): eadn4649, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517960

RESUMO

Genomic rearrangements are a hallmark of most childhood tumors, including medulloblastoma, one of the most common brain tumors in children, but their causes remain largely unknown. Here, we show that PiggyBac transposable element derived 5 (Pgbd5) promotes tumor development in multiple developmentally accurate mouse models of Sonic Hedgehog (SHH) medulloblastoma. Most Pgbd5-deficient mice do not develop tumors, while maintaining normal cerebellar development. Ectopic activation of SHH signaling is sufficient to enforce cerebellar granule cell progenitor-like cell states, which exhibit Pgbd5-dependent expression of distinct DNA repair and neurodevelopmental factors. Mouse medulloblastomas expressing Pgbd5 have increased numbers of somatic structural DNA rearrangements, some of which carry PGBD5-specific sequences at their breakpoints. Similar sequence breakpoints recurrently affect somatic DNA rearrangements of known tumor suppressors and oncogenes in medulloblastomas in 329 children. This identifies PGBD5 as a medulloblastoma mutator and provides a genetic mechanism for the generation of oncogenic DNA rearrangements in childhood cancer.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Animais , Camundongos , Meduloblastoma/genética , Transposases/genética , Transposases/metabolismo , Proteínas Hedgehog/metabolismo , Fatores de Transcrição/genética , Mutagênese , Neoplasias Cerebelares/genética
2.
bioRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37163102

RESUMO

DNA transposable elements and transposase-derived genes are present in most living organisms, including vertebrates, but their function is largely unknown. PiggyBac Transposable Element Derived 5 (PGBD5) is an evolutionarily conserved vertebrate DNA transposase-derived gene with retained nuclease activity in cells. Vertebrate brain development is known to be associated with prominent neuronal cell death and DNA breaks, but their causes and functions are not well understood. Here, we show that PGBD5 contributes to normal brain development in mice and humans, where its deficiency causes disorder of intellectual disability, movement and seizures. In mice, Pgbd5 is required for the developmental induction of post-mitotic DNA breaks and recurrent somatic genome rearrangements in neurons. Together, these studies nominate PGBD5 as the long-hypothesized neuronal DNA nuclease required for brain function in mammals.

4.
Nat Med ; 24(8): 1151-1156, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29967349

RESUMO

Small-molecule inhibitors of the serine dipeptidases DPP8 and DPP9 (DPP8/9) induce a lytic form of cell death called pyroptosis in mouse and human monocytes and macrophages1,2. In mouse myeloid cells, Dpp8/9 inhibition activates the inflammasome sensor Nlrp1b, which in turn activates pro-caspase-1 to mediate cell death3, but the mechanism of DPP8/9 inhibitor-induced pyroptosis in human myeloid cells is not yet known. Here we show that the CARD-containing protein CARD8 mediates DPP8/9 inhibitor-induced pro-caspase-1-dependent pyroptosis in human myeloid cells. We further show that DPP8/9 inhibitors induce pyroptosis in the majority of human acute myeloid leukemia (AML) cell lines and primary AML samples, but not in cells from many other lineages, and that these inhibitors inhibit human AML progression in mouse models. Overall, this work identifies an activator of CARD8 in human cells and indicates that its activation by small-molecule DPP8/9 inhibitors represents a new potential therapeutic strategy for AML.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Inibidores de Proteases/uso terapêutico , Piroptose/efeitos dos fármacos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , Linhagem Celular Tumoral , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Progressão da Doença , Células HEK293 , Humanos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia
5.
Cancer Discov ; 8(4): 478-497, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29431698

RESUMO

In acute myeloid leukemia (AML), chemotherapy resistance remains prevalent and poorly understood. Using functional proteomics of patient AML specimens, we identified MEF2C S222 phosphorylation as a specific marker of primary chemoresistance. We found that Mef2cS222A/S222A knock-in mutant mice engineered to block MEF2C phosphorylation exhibited normal hematopoiesis, but were resistant to leukemogenesis induced by MLL-AF9 MEF2C phosphorylation was required for leukemia stem cell maintenance and induced by MARK kinases in cells. Treatment with the selective MARK/SIK inhibitor MRT199665 caused apoptosis and conferred chemosensitivity in MEF2C-activated human AML cell lines and primary patient specimens, but not those lacking MEF2C phosphorylation. These findings identify kinase-dependent dysregulation of transcription factor control as a determinant of therapy response in AML, with immediate potential for improved diagnosis and therapy for this disease.Significance: Functional proteomics identifies phosphorylation of MEF2C in the majority of primary chemotherapy-resistant AML. Kinase-dependent dysregulation of this transcription factor confers susceptibility to MARK/SIK kinase inhibition in preclinical models, substantiating its clinical investigation for improved diagnosis and therapy of AML. Cancer Discov; 8(4); 478-97. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 371.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/tratamento farmacológico , Fatores de Transcrição MEF2/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Fatores de Transcrição MEF2/química , Camundongos , Camundongos Transgênicos , Fosforilação , Proteômica
6.
Sci Transl Med ; 9(414)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093183

RESUMO

Despite intense efforts, the cure rates of childhood and adult solid tumors are not satisfactory. Resistance to intensive chemotherapy is common, and targets for molecular therapies are largely undefined. We have found that the majority of childhood solid tumors, including rhabdoid tumors, neuroblastoma, medulloblastoma, and Ewing sarcoma, express an active DNA transposase, PGBD5, that can promote site-specific genomic rearrangements in human cells. Using functional genetic approaches, we discovered that mouse and human cells deficient in nonhomologous end joining (NHEJ) DNA repair cannot tolerate the expression of PGBD5. In a chemical screen of DNA damage signaling inhibitors, we identified AZD6738 as a specific sensitizer of PGBD5-dependent DNA damage and apoptosis. We found that expression of PGBD5, but not its nuclease activity-deficient mutant, was sufficient to induce sensitivity to AZD6738. Depletion of endogenous PGBD5 conferred resistance to AZD6738 in human tumor cells. PGBD5-expressing tumor cells accumulated unrepaired DNA damage in response to AZD6738 treatment and underwent apoptosis in both dividing and G1-phase cells in the absence of immediate DNA replication stress. Accordingly, AZD6738 exhibited nanomolar potency against most neuroblastoma, medulloblastoma, Ewing sarcoma, and rhabdoid tumor cells tested while sparing nontransformed human and mouse embryonic fibroblasts in vitro. Finally, treatment with AZD6738 induced apoptosis and regression of human neuroblastoma and medulloblastoma tumors engrafted in immunodeficient mice in vivo. This effect was potentiated by combined treatment with cisplatin, including substantial antitumor activity against patient-derived primary neuroblastoma xenografts. These findings delineate a therapeutically actionable synthetic dependency induced in PGBD5-expressing solid tumors.


Assuntos
Reparo do DNA/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pirimidinas/uso terapêutico , Sulfóxidos/uso terapêutico , Transposases/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Criança , Dano ao DNA , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Indóis , Camundongos , Camundongos Nus , Modelos Biológicos , Morfolinas , Pirimidinas/farmacologia , Transdução de Sinais , Sulfonamidas , Sulfóxidos/farmacologia , Transposases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nat Genet ; 49(7): 1005-1014, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28504702

RESUMO

Genomic rearrangements are a hallmark of human cancers. Here, we identify the piggyBac transposable element derived 5 (PGBD5) gene as encoding an active DNA transposase expressed in the majority of childhood solid tumors, including lethal rhabdoid tumors. Using assembly-based whole-genome DNA sequencing, we found previously undefined genomic rearrangements in human rhabdoid tumors. These rearrangements involved PGBD5-specific signal (PSS) sequences at their breakpoints and recurrently inactivated tumor-suppressor genes. PGBD5 was physically associated with genomic PSS sequences that were also sufficient to mediate PGBD5-induced DNA rearrangements in rhabdoid tumor cells. Ectopic expression of PGBD5 in primary immortalized human cells was sufficient to promote cell transformation in vivo. This activity required specific catalytic residues in the PGBD5 transposase domain as well as end-joining DNA repair and induced structural rearrangements with PSS breakpoints. These results define PGBD5 as an oncogenic mutator and provide a plausible mechanism for site-specific DNA rearrangements in childhood and adult solid tumors.


Assuntos
Transformação Celular Neoplásica/genética , Tumor Rabdoide/genética , Transposases/fisiologia , Adulto , Animais , Domínio Catalítico , Linhagem Celular , Criança , Pré-Escolar , Aberrações Cromossômicas , Pontos de Quebra do Cromossomo , Reparo do DNA por Junção de Extremidades/genética , DNA de Neoplasias/genética , Rearranjo Gênico/genética , Genes Supressores de Tumor , Humanos , Lactente , Camundongos , Camundongos Nus , Mutagênese Sítio-Dirigida , Interferência de RNA , Proteínas Recombinantes/metabolismo , Sequências Reguladoras de Ácido Nucleico , Sequências Repetidas Terminais/genética , Transposases/química , Transposases/genética
9.
J Proteome Res ; 14(8): 3403-8, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26153614

RESUMO

Recent developments in quantitative high-resolution mass spectrometry have led to significant improvements in the sensitivity and specificity of the biochemical analyses of cellular reactions, protein-protein interactions, and small-molecule-drug discovery. These approaches depend on cellular proteome extraction that preserves native protein activities. Here, we systematically analyzed mechanical methods of cell lysis and physical protein extraction to identify those that maximize the extraction of cellular proteins while minimizing their denaturation. Cells were mechanically disrupted using Potter-Elvehjem homogenization, probe- or adaptive-focused acoustic sonication, and were in the presence of various detergents, including polyoxyethylene ethers and esters, glycosides, and zwitterions. Using fluorescence spectroscopy, biochemical assays, and mass spectrometry proteomics, we identified the combination of adaptive focused acoustic (AFA) sonication in the presence of a binary poloxamer-based mixture of octyl-ß-glucoside and Pluronic F-127 to maximize the depth and yield of the proteome extraction while maintaining native protein activity. This binary poloxamer extraction system allowed for native proteome extraction comparable in coverage to the proteomes extracted using denaturing SDS or guanidine-containing buffers, including the efficient extraction of all major cellular organelles. This high-efficiency cellular extraction system should prove useful for a variety of cell biochemical studies, including structural and functional proteomics.


Assuntos
Extratos Celulares/química , Peptídeos/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Frações Subcelulares/metabolismo , Extratos Celulares/isolamento & purificação , Linhagem Celular , Linhagem Celular Tumoral , Fracionamento Químico/métodos , Cromatografia Líquida/métodos , Detergentes/química , Células HeLa , Humanos , Células Jurkat , Poloxâmero/química , Proteoma/isolamento & purificação , Reprodutibilidade dos Testes , Sonicação/métodos , Espectrometria de Fluorescência , Espectrometria de Massas em Tandem/métodos
10.
Br J Haematol ; 168(2): 230-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25256574

RESUMO

Activating mutations of the interleukin-7 receptor (IL7R) occur in approximately 10% of patients with T cell acute lymphoblastic leukaemia (T-ALL). Most mutations generate a cysteine at the transmembrane domain leading to receptor homodimerization through disulfide bond formation and ligand-independent activation of STAT5. We hypothesized that the reducing agent N-acetylcysteine (NAC), a well-tolerated drug used widely in clinical practice to treat acetaminophen overdose, would reduce disulfide bond formation, and inhibit mutant IL7R-mediated oncogenic signalling. We found that treatment with NAC disrupted IL7R homodimerization in IL7R-mutant DND-41 cells as assessed by non-reducing Western blot, as well as in a luciferase complementation assay. NAC led to STAT5 dephosphorylation and cell apoptosis at clinically achievable concentrations in DND-41 cells, and Ba/F3 cells transformed by an IL7R-mutant construct containing a cysteine insertion. The apoptotic effects of NAC could be rescued in part by a constitutively active allele of STAT5. Despite using doses lower than those tolerated in humans, NAC treatment significantly inhibited the progression of human DND-41 cells engrafted in immunodeficient mice. Thus, targeting leukaemogenic IL7R homodimerization with NAC offers a potentially effective and feasible therapeutic strategy that warrants testing in patients with T-ALL.


Assuntos
Acetilcisteína/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Laminina/metabolismo , Proteínas Ribossômicas/metabolismo , Animais , Apoptose/fisiologia , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptores de Laminina/genética , Proteínas Ribossômicas/genética , Transdução de Sinais
11.
J Clin Invest ; 124(2): 644-55, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24401270

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer that is frequently associated with activating mutations in NOTCH1 and dysregulation of MYC. Here, we performed 2 complementary screens to identify FDA-approved drugs and drug-like small molecules with activity against T-ALL. We developed a zebrafish system to screen small molecules for toxic activity toward MYC-overexpressing thymocytes and used a human T-ALL cell line to screen for small molecules that synergize with Notch inhibitors. We identified the antipsychotic drug perphenazine in both screens due to its ability to induce apoptosis in fish, mouse, and human T-ALL cells. Using ligand-affinity chromatography coupled with mass spectrometry, we identified protein phosphatase 2A (PP2A) as a perphenazine target. T-ALL cell lines treated with perphenazine exhibited rapid dephosphorylation of multiple PP2A substrates and subsequent apoptosis. Moreover, shRNA knockdown of specific PP2A subunits attenuated perphenazine activity, indicating that PP2A mediates the drug's antileukemic activity. Finally, human T-ALLs treated with perphenazine exhibited suppressed cell growth and dephosphorylation of PP2A targets in vitro and in vivo. Our findings provide a mechanistic explanation for the recurring identification of phenothiazines as a class of drugs with anticancer effects. Furthermore, these data suggest that pharmacologic PP2A activation in T-ALL and other cancers driven by hyperphosphorylated PP2A substrates has therapeutic potential.


Assuntos
Apoptose , Fenotiazinas/química , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteína Fosfatase 2/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatografia de Afinidade , Modelos Animais de Doenças , Antagonistas de Dopamina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectrometria de Massas , Camundongos , Perfenazina/química , Fosforilação , Pigmentação , Proteômica , Receptores Notch/metabolismo , Fatores de Tempo , Peixe-Zebra
12.
Nat Med ; 18(7): 1118-22, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22683780

RESUMO

Although the treatment of acute myeloid leukemia (AML) has improved substantially in the past three decades, more than half of all patients develop disease that is refractory to intensive chemotherapy. Functional genomics approaches offer a means to discover specific molecules mediating the aberrant growth and survival of cancer cells. Thus, using a loss-of-function RNA interference genomic screen, we identified the aberrant expression of hepatocyte growth factor (HGF) as a crucial element in AML pathogenesis. We found HGF expression leading to autocrine activation of its receptor tyrosine kinase, MET, in nearly half of the AML cell lines and clinical samples we studied. Genetic depletion of HGF or MET potently inhibited the growth and survival of HGF-expressing AML cells. However, leukemic cells treated with the specific MET kinase inhibitor crizotinib developed resistance resulting from compensatory upregulation of HGF expression, leading to the restoration of MET signaling. In cases of AML where MET is coactivated with other tyrosine kinases, such as fibroblast growth factor receptor 1 (FGFR1), concomitant inhibition of FGFR1 and MET blocked this compensatory HGF upregulation, resulting in sustained logarithmic cell killing both in vitro and in xenograft models in vivo. Our results show a widespread dependence of AML cells on autocrine activation of MET, as well as the key role of compensatory upregulation of HGF expression in maintaining leukemogenic signaling by this receptor. We anticipate that these findings will lead to the design of additional strategies to block adaptive cellular responses that drive compensatory ligand expression as an essential component of the targeted inhibition of oncogenic receptors in human cancers.


Assuntos
Comunicação Autócrina , Leucemia Mieloide Aguda/enzimologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Comunicação Autócrina/efeitos dos fármacos , Comunicação Autócrina/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Crizotinibe , Ativação Enzimática/efeitos dos fármacos , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Imuno-Histoquímica , Cinética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Pirazóis/farmacologia , Piridinas/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Indução de Remissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA