Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 369(3): 345-363, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30910921

RESUMO

Nonselective glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists are efficacious in chronic pain but have significant tolerability issues, likely arising from the ubiquitous expression of AMPA receptors in the central nervous system (CNS). Recently, LY3130481 has been shown to selectively block AMPA receptors coassembled with the auxiliary protein, transmembrane AMPA receptor regulatory protein (TARP) γ8, which is highly expressed in the hippocampus but also in pain pathways, including anterior cingulate (ACC) and somatosensory cortices and the spinal cord, suggesting that selective blockade of γ8/AMPA receptors may suppress nociceptive signaling with fewer CNS side effects. The potency of LY3130481 on recombinant γ8-containing AMPA receptors was modulated by coexpression with other TARPs; γ2 subunits affected activity more than γ3 subunits. Consistent with these findings, LY3130481 had decreasing potency on receptors from rat hippocampal, cortical, spinal cord, and cerebellar neurons that was replicated in tissue from human brain. LY3130481 partially suppressed, whereas the nonselective AMPA antagonist GYKI53784 completely blocked, AMPA receptor-dependent excitatory postsynaptic potentials in ACC and spinal neurons in vitro. Similarly, LY3130481 attenuated short-term synaptic plasticity in spinal sensory neurons in vivo in response to stimulation of peripheral afferents. LY3130481 also significantly reduced nocifensive behaviors after intraplantar formalin that was correlated with occupancy of CNS γ8-containing AMPA receptors. In addition, LY3130481 dose-dependently attenuated established gait impairment after joint damage and tactile allodynia after spinal nerve ligation, all in the absence of motor side effects. Collectively, these data demonstrate that LY3130481 can suppress excitatory synaptic transmission and plasticity in pain pathways containing γ8/AMPA receptors and significantly reduce nocifensive behaviors, suggesting a novel, effective, and safer therapy for chronic pain conditions.


Assuntos
Canais de Cálcio/metabolismo , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Terapia de Alvo Molecular , Receptores de AMPA/metabolismo , Animais , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Dor Crônica/fisiopatologia , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Distribuição Tecidual
2.
CNS Neurol Disord Drug Targets ; 16(10): 1099-1110, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29090671

RESUMO

BACKGROUND & OBJECTIVE: 6-[(1S)-1-[1-[5-(2-hydroxyethoxy)-2-pyridyl]pyrazol-3-yl]ethyl]- 3H-1,3-benzothiazol-2-one (LY3130481 or CERC-611) is a selective antagonist of AMPA receptors containing transmembrane AMPA receptor regulatory protein (TARP) γ-8 that is under development for epilepsy. The present study provided a broad inquiry into its anticonvulsant properties. LY3130481 was anticonvulsant in multiple acute seizure provocation models in mice and rats. In addition, LY3130481 was effective against absence seizures in the GAERS genetic model and in the Frings mouse model. Likewise, LY3130481 attenuated convulsions in mice and rats with long-term induction of seizures (e.g., corneal, pentylenetetrazole, hippocampal, and amygdala kindled seizures). In slices of epileptic human cortex, LY3130481 significantly decreased neuronal firing frequencies. LY3130481 displaced from rat brain a radioligand specific for AMPA receptors associated with TARP γ-8 whereas non-TARP-selective molecules did not. Binding was also observed in hippocampus freshly transected from a patient. RESULTS & CONCLUSION: Taken as a whole, the findings reported here establish the broad anticonvulsant efficacy of LY3130481 indicating that blockade of AMPA receptors associated with TARP γ-8 is sufficient for these protective effects.


Assuntos
Benzotiazóis/farmacologia , Canais de Cálcio/metabolismo , Pirazóis/farmacologia , Receptores de AMPA/antagonistas & inibidores , Convulsões/prevenção & controle , Animais , Anticonvulsivantes/farmacologia , Córtex Cerebral/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Neurônios/fisiologia , Ensaio Radioligante , Ratos
3.
Neuropharmacology ; 126: 257-270, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28757050

RESUMO

6-[(1S)-1-[1-[5-(2-hydroxyethoxy)-2-pyridyl]pyrazol-3-yl]ethyl]-3H-1,3-benzothiazol-2-one (LY3130481 or CERC-611) is a selective antagonist of AMPA receptors containing transmembrane AMPA receptor regulatory protein (TARP) γ-8. This molecule has been characterized as a potent and efficacious anticonvulsant in an array of acute and chronic epilepsy models in rodents. The present set of experiments was designed to assess the effects of LY3130481 on the electroencephelogram (EEG), cognitive function, and neurochemical outflow. LY3130481 disrupted food-maintained responding in rats and spontaneous alternation in a Y-maze in mice. In rat fear conditioning, LY3130481 caused a deficit in trace (hippocampal-dependent), but not in delay fear conditioning. Although these effects on cognitive performances were observed, the known cognitive-impairing anticonvulsant, topiramate, did not always produce deficits under these assay conditions. LY3130481 produced modest increases in wake times in rats. In addition, LY3130481 was able to attenuate some impairing effects of standard antiepileptic drugs. The motor-impairing effects of the lacosamide were attenuated by LY3130481 as was the decrease in non-rapid-eye movement sleep induced by carbamazepine. Evaluation of the effect of LY3130481 on neurotransmitter and metabolite efflux in the rat medial prefrontal cortex, using in vivo microdialysis, revealed significant increases in the pro-cognitive and wake-promoting neurotransmitters, histamine and acetylcholine, as well as in serotonin, telemethylhistamine, 5-HIAA, HVA and MHPG. LY3130481 thus presents a novel behavioral profile that will have to be evaluated in patients to fully appreciate its implications for therapeutics. LY3130481 is currently under clinical development as CERC-611 as an antiepileptic.


Assuntos
Anticonvulsivantes/administração & dosagem , Benzotiazóis/administração & dosagem , Canais de Cálcio/fisiologia , Cognição/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Pirazóis/administração & dosagem , Acetilcolina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Eletroencefalografia , Medo/efeitos dos fármacos , Frutose/administração & dosagem , Frutose/análogos & derivados , Histamina/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Nitrilas , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Piridonas/administração & dosagem , Ratos Sprague-Dawley , Ratos Wistar , Serotonina/metabolismo , Fases do Sono/efeitos dos fármacos , Topiramato
4.
Nat Med ; 22(12): 1496-1501, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27820603

RESUMO

Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.


Assuntos
Anticonvulsivantes/farmacologia , Benzotiazóis/farmacologia , Cerebelo/efeitos dos fármacos , Epilepsia/tratamento farmacológico , Prosencéfalo/efeitos dos fármacos , Pirazóis/farmacologia , Piridonas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Animais , Anticonvulsivantes/efeitos adversos , Canais de Cálcio/metabolismo , Cerebelo/metabolismo , Convulsivantes/toxicidade , Modelos Animais de Doenças , Tontura/induzido quimicamente , Epilepsia/induzido quimicamente , Camundongos , Nitrilas , Pentilenotetrazol/toxicidade , Prosencéfalo/metabolismo , Piridonas/efeitos adversos , Ratos , Receptores de AMPA/metabolismo , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
5.
J Neurochem ; 138(3): 384-96, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27216696

RESUMO

Disruption in the expression and function of synaptic proteins, and ion channels in particular, is critical in the pathophysiology of human neuropsychiatric and neurodegenerative diseases. However, very little is known regarding the functional and pharmacological properties of native synaptic human ion channels, and their potential changes in pathological conditions. Recently, an electrophysiological technique has been enabled for studying the functional and pharmacological properties of ion channels present in crude membrane preparation obtained from post-mortem frozen brains. We here extend these studies by showing that human synaptic ion channels also can be studied in this way. Synaptosomes purified from different regions of rodent and human brain (control and Alzheimer's) were characterized biochemically for enrichment of synaptic proteins, and expression of ion channel subunits. The same synaptosomes were also reconstituted in Xenopus oocytes, in which the functional and pharmacological properties of the native synaptic ion channels were characterized using the voltage clamp technique. We show that we can detect GABA, (RS)-α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and NMDA receptors, and modulate them pharmacologically with selective agonists, antagonists, and allosteric modulators. Furthermore, changes in ion channel expression and function were detected in synaptic membranes from Alzheimer's brains. Our present results demonstrate the possibility to investigate synaptic ion channels from healthy and pathological brains. This method of synaptosomes preparation and injection into oocytes is a significant improvement over the earlier method. It opens the way to directly testing, on native ion channels, the effects of novel drugs aimed at modulating important classes of synaptic targets. Disruption in the expression and function of synaptic ion channels is critical in the pathophysiology of human neurodegenerative diseases. We here show that synaptosomes purified from rodent and human frozen brain (control and Alzheimer disease) can be studied both biochemically and functionally. This method opens the way to directly testing the effects of novel drugs on native ion channels.


Assuntos
Encéfalo/metabolismo , Canais Iônicos/metabolismo , Oócitos/metabolismo , Sinaptossomos/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Humanos , Técnicas de Patch-Clamp/métodos , Ratos Wistar , Receptores de GABA-A/metabolismo , Xenopus laevis , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
6.
J Med Chem ; 59(10): 4753-68, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27067148

RESUMO

Transmembrane AMPA receptor regulatory proteins (TARPs) are a family of scaffolding proteins that regulate AMPA receptor trafficking and function. TARP γ-8 is one member of this family and is highly expressed within the hippocampus relative to the cerebellum. A selective TARP γ-8-dependent AMPA receptor antagonist (TDAA) is an innovative approach to modulate AMPA receptors in specific brain regions to potentially increase the therapeutic index relative to known non-TARP-dependent AMPA antagonists. We describe here, for the first time, the discovery of a noncompetitive AMPA receptor antagonist that is dependent on the presence of TARP γ-8. Three major iteration cycles were employed to improve upon potency, CYP1A2-dependent challenges, and in vivo clearance. An optimized molecule, compound (-)-25 (LY3130481), was fully protective against pentylenetetrazole-induced convulsions in rats without the motor impairment associated with non-TARP-dependent AMPA receptor antagonists. Compound (-)-25 could be utilized to provide proof of concept for antiepileptic efficacy with reduced motor side effects in patients.


Assuntos
Canais de Cálcio/metabolismo , Descoberta de Drogas , Receptores de AMPA/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Receptores de AMPA/metabolismo
7.
Bioorg Med Chem Lett ; 17(18): 5233-8, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17629697

RESUMO

Inhibition of the glycine transporter GlyT1 is a potential strategy for the treatment of schizophrenia. A novel series of GlyT1 inhibitors and their structure-activity relationships (SAR) are described. Members of this series are highly potent and selective transport inhibitors which are shown to elevate glycine levels in cerebrospinal fluid.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Ratos , Relação Estrutura-Atividade
8.
Bioorg Med Chem Lett ; 15(4): 899-903, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15686883

RESUMO

Many 3-aryl-4-(1,2,3,4-tetrahydro[1,4]diazepino[6,7,1-hi]indol-7-yl)maleimides exhibit potent GSK3 inhibitory activity (<100 nM IC(50)), although few show significant selectivity (>100x) versus CDK2, CDK4, or PKCbetaII. However, combining 3-(imidazo[1,2-a]pyridin-3-yl), 3-(pyrazolo[1,5-a]pyridin-3-yl) or aza-analogs with a 4-(2-acyl-(1,2,3,4-tetrahydro[1,4]diazepino[6,7,1-hi]indol-7-yl)) group on the maleimide resulted in very potent inhibitors of GSK3 (160 to >10,000-fold selectivity versus CDK2/4 and PKCbetaII. These compounds also inhibited tau phosphorylation in cells and were effective in lowering plasma glucose in a rat model of type 2 diabetes (ZDF rat).


Assuntos
Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Maleimidas/síntese química , Animais , Glicemia/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Concentração Inibidora 50 , Maleimidas/farmacologia , Fosforilação/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade , Proteínas tau/metabolismo
9.
J Med Chem ; 47(16): 3934-7, 2004 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-15267232

RESUMO

Glycogen synthase kinase-3 (GSK3) is involved in signaling from the insulin receptor. Inhibitors of GSK3 are expected to effect lowering of plasma glucose similar to insulin, making GSK3 an attractive target for the treatment of type 2 diabetes. Herein we report the discovery of a series of potent and selective GSK3 inhibitors. Compounds 7-12 show oral activity in an in vivo model of type II diabetes, and 9 and 12 have desirable PK properties.


Assuntos
Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Imidazóis/síntese química , Piridinas/síntese química , Pirróis/síntese química , Administração Oral , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Glicogênio Sintase Quinase 3 beta , Humanos , Imidazóis/farmacocinética , Imidazóis/farmacologia , Piridinas/farmacocinética , Piridinas/farmacologia , Pirróis/farmacocinética , Pirróis/farmacologia , Ratos , Ratos Zucker
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA