Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
2.
J Immunol ; 213(1): 75-85, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758115

RESUMO

In chronic obstructive pulmonary disease (COPD), inflammation gives rise to protease-mediated degradation of the key extracellular matrix protein, elastin, which causes irreversible loss of pulmonary function. Intervention against proteolysis has met with limited success in COPD, due in part to our incomplete understanding of the mechanisms that underlie disease pathogenesis. Peptidyl arginine deiminase (PAD) enzymes are a known modifier of proteolytic susceptibility, but their involvement in COPD in the lungs of affected individuals is underexplored. In this study, we showed that enzyme isotypes PAD2 and PAD4 are present in primary granules of neutrophils and that cells from people with COPD release increased levels of PADs when compared with neutrophils of healthy control subjects. By examining bronchoalveolar lavage and lung tissue samples of patients with COPD or matched smoking and nonsmoking counterparts with normal lung function, we reveal that COPD presents with markedly increased airway concentrations of PADs. Ex vivo, we established citrullinated elastin in the peripheral airways of people with COPD, and in vitro, elastin citrullination significantly enhanced its proteolytic degradation by serine and matrix metalloproteinases, including neutrophil elastase and matrix metalloprotease-12, respectively. These results provide a mechanism by which neutrophil-released PADs affect lung function decline, indicating promise for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.


Assuntos
Elastina , Neutrófilos , Proteína-Arginina Desiminase do Tipo 2 , Proteína-Arginina Desiminase do Tipo 4 , Proteólise , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Neutrófilos/imunologia , Elastina/metabolismo , Feminino , Masculino , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Pessoa de Meia-Idade , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/imunologia , Idoso , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Citrulinação , Desiminases de Arginina em Proteínas/metabolismo , Elastase de Leucócito/metabolismo , Pulmão/imunologia , Pulmão/patologia
3.
Thorax ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418195

RESUMO

INTRODUCTION: Altered complement component 3 (C3) activation in patients with alpha-1 antitrypsin (AAT) deficiency (AATD) has been reported. To understand the potential impact on course of inflammation, the aim of this study was to investigate whether C3d, a cleavage-product of C3, triggers interleukin (IL)-1ß secretion via activation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome. The objective was to explore the effect of AAT augmentation therapy in patients with AATD on the C3d/complement receptor 3 (CR3) signalling axis of monocytes and on circulating pro-inflammatory markers. METHODS: Inflammatory mediators were detected in blood from patients with AATD (n=28) and patients with AATD receiving augmentation therapy (n=19). Inflammasome activation and IL-1ß secretion were measured in monocytes of patients with AATD, and following C3d stimulation in the presence or absence of CR3 or NLRP3 inhibitors. RESULTS: C3d acting via CR3 induces NLRP3 and pro-IL-1ß production, and through induction of endoplasmic reticulum (ER) stress and calcium flux, triggers caspase-1 activation and IL-1ß secretion. Treatment of individuals with AATD with AAT therapy results in decreased plasma levels of C3d (3.0±1.2 µg/mL vs 1.3±0.5 µg/mL respectively, p<0.0001) and IL-1ß (115.4±30 pg/mL vs 73.3±20 pg/mL, respectively, p<0.0001), with a 2.0-fold decrease in monocyte NLRP3 protein expression (p=0.0303), despite continued ER stress activation. DISCUSSION: These results provide strong insight into the mechanism of complement-driven inflammation associated with AATD. Although the described variance in C3d and NLRP3 activation decreased post AAT augmentation therapy, results demonstrate persistent C3d and monocyte ER stress, with implications for new therapeutics and clinical practice.

4.
Thorax ; 78(8): 835-839, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37208188

RESUMO

Treatment with elexacaftor/tezacaftor/ivacaftor (ETI) has been shown to improve lung function in people with cystic fibrosis (PWCF). However, its biological effects remain incompletely understood. Here we describe alterations in pulmonary and systemic inflammation in PWCF following initiation of ETI. To address this, we collected spontaneously expectorated sputum and matching plasma from PWCF (n=30) immediately prior to ETI therapy, then again at 3 and 12 months. Within 3 months, PWCF demonstrated reduced activity of neutrophil elastase, proteinase three and cathepsin G, and decreased concentrations of interleukin (IL)-1ß and IL-8 in sputum, accompanied by decreased Pseudomonas burden and restoration of secretory leukoprotease inhibitor levels. Once treated with ETI, all airway inflammatory markers studied in PWCF had reduced to levels found in matched non-CF bronchiectasis controls. In PWCF with advanced disease, ETI resulted in decreased plasma concentrations of IL-6, C-reactive protein and soluble TNF receptor one as well as normalisation of levels of the acute phase protein, alpha-1 antitrypsin. These data clarify the immunomodulatory effects of ETI and underscore its role as a disease modifier.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Inflamação/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística , Mutação , Aminofenóis/uso terapêutico , Benzodioxóis/uso terapêutico
5.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742845

RESUMO

In the lung, glycosaminoglycans (GAGs) are dispersed in the extracellular matrix (ECM) occupying the interstitial space between the capillary endothelium and the alveolar epithelium, in the sub-epithelial tissue and in airway secretions. In addition to playing key structural roles, GAGs contribute to a number of physiologic processes ranging from cell differentiation, cell adhesion and wound healing. Cytokine and chemokine-GAG interactions are also involved in presentation of inflammatory molecules to respective receptors leading to immune cell migration and airway infiltration. More recently, pathophysiological roles of GAGs have been described. This review aims to discuss the biological roles and molecular interactions of GAGs, and their impact in the pathology of chronic airway diseases, such as cystic fibrosis and chronic obstructive pulmonary disease. Moreover, the role of GAGs in respiratory disease has been heightened by the current COVID-19 pandemic. This review underlines the essential need for continued research aimed at exploring the contribution of GAGs in the development of inflammation, to provide a better understanding of their biological impact, as well as leads in the development of new therapeutic agents.


Assuntos
Asma , COVID-19 , Doença Pulmonar Obstrutiva Crônica , Glicosaminoglicanos/metabolismo , Humanos , Pulmão/metabolismo , Pandemias
6.
Am J Respir Cell Mol Biol ; 67(1): 76-88, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35507773

RESUMO

Alpha-1 antitrypsin deficiency (AATD) is characterized by neutrophil-dominated inflammation resulting in emphysema. The cholesterol-rich neutrophil outer plasma membrane plays a central role in adhesion and subsequent transmigration to underlying tissues. This study aimed to investigate mechanisms of increased neutrophil adhesion in AATD and whether alpha-1 antitrypsin (AAT) augmentation therapy abrogates this effect. Plasma and blood neutrophils were donated by healthy controls (n = 20), AATD (n = 30), and AATD patients after AAT augmentation therapy (n = 6). Neutrophil membrane protein expression was investigated using liquid chromatography-tandem mass spectrometry. The effect of once-weekly intravenous AAT augmentation therapy was assessed by calcium fluorometric, µ-calpain, and cell adhesion assays. Decreased neutrophil plasma membrane cholesterol content (P = 0.03), yet increased abundance of integrin α-M (fold change 1.91), integrin α-L (fold change 3.76), and cytoskeletal adaptor proteins including talin-1 (fold change 4.04) were detected on AATD neutrophil plasma membrane fractions. The described inflammatory induced structural changes were a result of a more than twofold increased cytosolic calcium concentration (P = 0.02), leading to significant calcium-dependent µ-calpain activity (3.5-fold change; P = 0.005), resulting in proteolysis of the membrane cholesterol trafficking protein caveolin-1. Treatment of AAT-deficient individuals with AAT augmentation therapy resulted in increased caveolin-1 and membrane cholesterol content (111.8 ± 15.5 vs. 64.18 ± 7.8 µg/2 × 107 cells before and after treatment, respectively; P = 0.02), with concurrent decreased neutrophil integrin expression and adhesion. Results demonstrate an auxiliary benefit of AAT augmentation therapy, evident by a decrease in circulating inflammation and controlled neutrophil adhesion.


Assuntos
Enfisema Pulmonar , Deficiência de alfa 1-Antitripsina , Cálcio/metabolismo , Caveolina 1/metabolismo , Colesterol/metabolismo , Humanos , Inflamação/metabolismo , Integrinas/metabolismo , Neutrófilos/metabolismo , Enfisema Pulmonar/metabolismo , alfa 1-Antitripsina/metabolismo
7.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269582

RESUMO

Alpha-1 antitrypsin (AAT) is the canonical serine protease inhibitor of neutrophil-derived proteases and can modulate innate immune mechanisms through its anti-inflammatory activities mediated by a broad spectrum of protein, cytokine, and cell surface interactions. AAT contains a reactive methionine residue that is critical for its protease-specific binding capacity, whereby AAT entraps the protease on cleavage of its reactive centre loop, neutralises its activity by key changes in its tertiary structure, and permits removal of the AAT-protease complex from the circulation. Recently, however, the immunomodulatory role of AAT has come increasingly to the fore with several prominent studies focused on lipid or protein-protein interactions that are predominantly mediated through electrostatic, glycan, or hydrophobic potential binding sites. The aim of this review was to investigate the spectrum of AAT molecular interactions, with newer studies supporting a potential therapeutic paradigm for AAT augmentation therapy in disorders in which a chronic immune response is strongly linked.


Assuntos
Apolipoproteínas/metabolismo , Caspases/metabolismo , Proteínas do Sistema Complemento/metabolismo , Citocinas/metabolismo , alfa 1-Antitripsina/metabolismo , Sítios de Ligação/genética , COVID-19/metabolismo , COVID-19/virologia , Glicosilação , Humanos , Mutação , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/fisiologia , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/metabolismo
8.
EBioMedicine ; 77: 103894, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35217407

RESUMO

BACKGROUND: Interleukin-6 (IL-6) is elevated in SARS-CoV-2 infection. IL-6 regulates acute-phase proteins, such as alpha-1 antitrypsin (AAT), a key lung anti-protease. We investigated the protease-anti-protease balance in the circulation and pulmonary compartments in SARS-CoV-2 acute respiratory distress syndrome (ARDS) compared to non-SARS-CoV-2 ARDS (nsARDS) and the effects of tocilizumab (IL-6 receptor antagonist) on anti-protease defence in SARS-CoV-2 infection. METHODS: Levels and activity of AAT and neutrophil elastase (NE) were measured in plasma, airway tissue and tracheal secretions (TA) of people with SARS-CoV-2 ARDS or nsARDS. AAT and IL-6 levels were evaluated in people with moderate SARS-CoV-2 infection who received standard of care +/- tocilizumab. FINDINGS: AAT plasma levels doubled in SARS-CoV-2 ARDS. In lung parenchyma AAT levels were increased, as was the percentage of neutrophils involved in NET formation. A protease-anti-protease imbalance was detected in TA with active NE and no active AAT. The airway anti-protease, secretory leukoprotease inhibitor was decreased in SARS-CoV-2-infected lungs and cleaved in TA. In nsARDS, plasma AAT levels were elevated but TA samples had less AAT cleavage, with no detectable active NE in most samples. Induction of AAT in ARDS occurred mainly through IL-6. Tocilizumab down-regulated AAT during SARS-CoV-2 infection. INTERPRETATION: There is a protease-anti-protease imbalance in the airways of SARS-CoV-2-ARDS patients. This imbalance is a target for anti-protease therapy. FUNDING: NIH Serological Sciences Network, National Heart, Lung, and Blood Institute and National Institute of Diabetes and Digestive and Kidney Diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , Síndrome do Desconforto Respiratório , Deficiência de alfa 1-Antitripsina , Humanos , Peptídeo Hidrolases , Síndrome do Desconforto Respiratório/etiologia , SARS-CoV-2
9.
Am J Respir Crit Care Med ; 205(7): 783-794, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35021019

RESUMO

Rationale: Cystic fibrosis (CF) is caused by mutations in the CFTR (CF transmembrane conductance regulator) gene and is characterized by sustained inflammation. ATP triggers IL-1ß secretion via P2X7R (P2X7 receptor) and activation of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome. Objectives: To explore the effect of the CFTR modulator elexacaftor/tezacaftor/ivacaftor (Trikafta) on CFTR expression and the ATP/P2X7R signaling axis in monocytes and on circulating proinflammatory markers. Methods: Inflammatory mediators were detected in blood from 42 patients with CF before and after 3 months of Trikafta therapy. Markers of inflammasome activation and IL-1ß secretion were measured in monocytes before and after stimulation with ATP and LPS, in the presence or absence of the P2X7R inhibitor A438079. Measurements and Main Results: P2X7R is overexpressed in CF monocytes, and receptor inhibition decreased NLRP3 expression, caspase-1 activation, and IL-1ß secretion. In vitro and in vivo, P2X7R expression is regulated by CFTR function and intracellular chloride (Cl-) levels. Trikafta therapy restored CFTR expression yet decreased P2X7R in CF monocytes, resulting in normalized Cl- and potassium efflux, and reduced intracellular calcium levels. CFTR modulator therapy decreased circulating levels of ATP and LPS and reduced inflammasome activation and IL-1ß secretion. Conclusions: P2X7R expression is regulated by intracellular Cl- levels and in CF monocytes promotes inflammasome activation. Trikafta therapy significantly increased CFTR protein expression and reduced ATP/P2X7R-induced inflammasome activation. P2X7R may therefore be a promising target for reducing inflammation in patients with CF who are noneligible for Trikafta or other CFTR modulator therapy.


Assuntos
Fibrose Cística , Inflamassomos , Aminofenóis , Benzodioxóis , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Combinação de Medicamentos , Humanos , Indóis , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Monócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Pirazóis , Piridinas , Quinolinas , Receptores Purinérgicos P2X7/metabolismo
10.
Expert Rev Respir Med ; 16(1): 43-56, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726115

RESUMO

INTRODUCTION: Cystic fibrosis (CF) is a genetically inherited disease, with mortality and morbidity associated with respiratory disease. The inflammatory response in CF is characterized by excessive neutrophil influx to the airways, mainly due to the increased local production and retention of interleukin-8 (IL-8), a potent neutrophil chemoattractant. AREAS COVERED: We discuss how the chemokine IL-8 dominates the inflammatory profile of the airways in CF lung disease. Cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies are designed to correct the malfunctioning protein resulting from specific CFTR mutations. This review covers current evidence on the impact of CFTR impairment on levels of IL-8 and outlines the influence of effective CFTR modulation on inflammation in CF with a focus on cytokine production. Review of the literature was carried out using the PUBMED database, Google Scholar, and The Cochrane Library databases, using several appropriate generic terms. EXPERT OPINION: Therapeutic interventions specifically targeting the defective CFTR protein have improved the outlook for CF. Accumulating studies on the effect of highly effective CFTR modulation on inflammation indicate an impact on IL-8 levels. Further studies are required to increase our knowledge of early onset innate inflammatory dysregulation and on anti-inflammatory mechanisms of CFTR modulators.


Assuntos
Fibrose Cística , Interleucina-8 , Anti-Inflamatórios/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Mutação , Sistema Respiratório
11.
ERJ Open Res ; 7(4)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34881324

RESUMO

Oxidative stress from innate immune cells is a driving mechanism that underlies COPD pathogenesis. Individuals with α-1 antitrypsin (AAT) deficiency (AATD) have a dramatically increased risk of developing COPD. To understand this further, the aim of this study was to investigate whether AATD presents with altered neutrophil NADPH oxidase activation, due to the specific lack of plasma AAT. Experiments were performed using circulating neutrophils isolated from healthy controls and individuals with AATD. Superoxide anion (O2 -) production was determined from the rate of reduction of cytochrome c. Quantification of membrane NADPH oxidase subunits was performed by mass spectrometry and Western blot analysis. The clinical significance of our in vitro findings was assessed in patients with AATD and severe COPD receiving intravenous AAT replacement therapy. In vitro, AAT significantly inhibited O2 - production by stimulated neutrophils and suppressed receptor stimulation of cyclic adenosine monophosphate and extracellular signal-regulated kinase (ERK)1/2 phosphorylation. In addition, AAT reduced plasma membrane translocation of cytosolic phox components of the NADPH oxidase. Ex vivo, AATD neutrophils demonstrated increased plasma membrane-associated p67phox and p47phox and significantly increased O2 - production. The described variance in phox protein membrane assembly was resolved post-AAT augmentation therapy in vivo, the effects of which significantly reduced AATD neutrophil O2 - production to that of healthy control cells. These results expand our knowledge on the mechanism of neutrophil-driven airways disease associated with AATD. Therapeutic AAT augmentation modified neutrophil NADPH oxidase assembly and reactive oxygen species production, with implications for clinical use in conditions in which oxidative stress plays a pathogenic role.

12.
Biomedicines ; 9(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944741

RESUMO

Alpha-1 antitrypsin (AAT) deficiency (AATD) is characterized by increased risk for emphysema, chronic obstructive pulmonary disease (COPD), vasculitis, and wound-healing impairment. Neutrophils play a central role in the pathogenesis of AATD. Dysregulated complement activation in AATD results in increased plasma levels of C3d. The current study investigated the impact of C3d on circulating neutrophils. Blood was collected from AATD (n = 88) or non-AATD COPD patients (n = 10) and healthy controls (HC) (n = 40). Neutrophils were challenged with C3d, and degranulation was assessed by Western blotting, ELISA, or fluorescence resonance energy transfer (FRET) substrate assays. Ex vivo, C3d levels were increased in plasma (p < 0.0001) and on neutrophil plasma membranes (p = 0.038) in AATD compared to HC. C3d binding to CR3 receptors triggered primary (p = 0.01), secondary (p = 0.004), and tertiary (p = 0.018) granule release and increased CXCL8 secretion (p = 0.02). Ex vivo plasma levels of bactericidal-permeability-increasing-protein (p = 0.02), myeloperoxidase (p < 0.0001), and lactoferrin (p < 0.0001) were significantly increased in AATD patients. In endothelial cell scratch wound assays, C3d significantly decreased cell migration (p < 0.0001), an effect potentiated by neutrophil degranulated proteins (p < 0.0001). In summary, AATD patients had increased C3d in plasma and on neutrophil membranes and, together with neutrophil-released granule enzymes, reduced endothelial cell migration and wound healing, with potential implications for AATD-related vasculitis.

13.
Medicina (Kaunas) ; 57(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34441020

RESUMO

Background and Objectives: Alpha-1 antitrypsin is a serine protease inhibitor that demonstrates an array of immunomodulatory functions. Individuals with the genetic condition of alpha-1 antitrypsin deficiency (AATD) are at increased risk of early onset emphysematous lung disease. This lung disease is partly driven by neutrophil mediated lung destruction in an environment of low AAT. As peripheral neutrophil hyper-responsiveness in AATD leads to excessive degranulation and increased migration to the airways, we examined the expression of the membrane voltage-gated proton channel-1 (HVCN1), which is integrally linked to neutrophil function. The objectives of this study were to evaluate altered HVCN1 in AATD neutrophils, serine protease-dependent degradation of HVCN1, and to investigate the ability of serum AAT to control HVCN1 expression. Materials and Methods: Circulating neutrophils were purified from AATD patients (n = 20), AATD patients receiving AAT augmentation therapy (n = 3) and healthy controls (n = 20). HVCN1 neutrophil expression was assessed by flow cytometry and Western blot analysis. Neutrophil membrane bound elastase was measured by fluorescence resonance energy transfer. Results: In this study we demonstrated that HVCN1 protein is under-expressed in AATD neutrophils (p = 0.02), suggesting a link between reduced HVCN1 expression and AAT deficiency. We have demonstrated that HVCN1 undergoes significant proteolytic degradation in activated neutrophils (p < 0.0001), primarily due to neutrophil elastase activity (p = 0.0004). In addition, the treatment of AATD individuals with AAT augmentation therapy increased neutrophil plasma membrane HVCN1 expression (p = 0.01). Conclusions: Our results demonstrate reduced levels of HVCN1 in peripheral blood neutrophils that may influence the neutrophil-dominated immune response in the AATD airways and highlights the role of antiprotease treatment and specifically AAT augmentation therapy in protecting neutrophil membrane expression of HVCN1.


Assuntos
Neutrófilos , Deficiência de alfa 1-Antitripsina , Humanos , Pulmão , Proteólise , Prótons , Deficiência de alfa 1-Antitripsina/tratamento farmacológico , Deficiência de alfa 1-Antitripsina/genética
14.
Front Pharmacol ; 11: 1098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765284

RESUMO

In people with cystic fibrosis (PWCF), inflammation with concurrent infection occurs from a young age and significantly influences lung disease progression. Studies indicate that neutrophils are important effector cells in the pathogenesis of CF and in the development of anti-neutrophil cytoplasmic autoantibodies (ANCA). ANCA specific for bactericidal permeability increasing protein (BPI-ANCA) are detected in people with CF, and correlate with infection with Pseudomonas aeruginosa. The aim of this study was to determine the signaling mechanism leading to increased BPI release by CF neutrophils, while identifying IgG class BPI-ANCA in CF airways samples as the cause for impaired antimicrobial activity of BPI against P. aeruginosa. Plasma and/or bronchoalveolar lavage fluid (BAL) was collected from PWCF (n = 40), CF receiving ivacaftor therapy (n = 10), non-CF patient cohorts (n = 7) and healthy controls (n = 38). Plasma and BAL BPI and BPI-ANCA were measured by ELISA and GTP-bound Rac2 detected using an in vitro assay. The antibacterial effect of all treatments tested was determined by colony forming units enumeration. Levels of BPI are significantly increased in plasma (p = 0.007) and BALF (p < 0.0001) of PWCF. The signaling mechanism leading to increased degranulation and exocytosis of BPI by CF neutrophils (p = 0.02) involved enhancement of Rac2 GTP-loading (p = 0.03). The full-length BPI protein was detectable in all CF BAL samples and patients displayed ANCA with BPI specificity. IgG class autoantibodies were purified from CF BAL complexed to BPI (n=5), with IgG autoantibody cross-linking of antigen preventing BPI induced P. aeruginosa killing (p < 0.0001). Results indicate that the immune-mediated diminished antimicrobial defense, attributed to anti-BPI-IgG, necessitates the formation of a drug/immune complex intermediate that can maintain cytotoxic effects of BPI towards Gram-negative pathogens, with the potential to transform the current treatment of CF airways disease.

15.
Chronic Obstr Pulm Dis ; 7(3): 203-213, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32503090

RESUMO

For many years, the lung disease associated with alpha-1 antitrypsin (AAT) deficiency (AATD) was perceived as being secondary to an imbalance between this serine protease inhibitor and the target protease, neutrophil elastase (NE). More recently, a greater understanding of the pathways leading to lung inflammation has shed light on new potential attributes and presented AATD as an inflammatory condition in which proteases and neutrophils still play a major role, but in which pro-inflammatory cytokines, either induced by the actions of NE or by other pro-inflammatory processes normally modulated by AAT, are involved. In this review, we will look at the various cytokines centrally involved in AATD lung disease, and how a greater understanding of their contribution may help development of targeted therapies.

17.
Eur Respir J ; 55(4)2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32060059

RESUMO

Obstructive pulmonary disease in patients with α1 antitrypsin (AAT) deficiency (AATD) occurs earlier in life compared with patients without AATD. To understand this further, the aim of this study was to investigate whether AATD presents with altered neutrophil characteristics, due to the specific lack of plasma AAT, compared with non-AATD COPD.This study focussed on the neutrophil plasma membrane and, by use of label-free tandem mass spectrometry, the proteome of the neutrophil membrane was compared in forced expiratory volume in 1 s (FEV1)-matched AATD, non-AATD COPD and in AATD patients receiving weekly AAT augmentation therapy (n=6 patients per cohort). Altered protein expression in AATD was confirmed by Western blot, ELISA and fluorescence resonance energy transfer analysis.The neutrophil membrane proteome in AATD differed significantly from that of COPD as demonstrated by increased abundance and activity of primary granule proteins including neutrophil elastase on the cell surface in AATD. The signalling mechanism underlying increased degranulation involved Rac2 activation, subsequently resulting in proteinase-activated receptor 2 activation by serine proteinases and enhanced reactive oxygen species production. In vitro and ex vivo, AAT reduced primary granule release and the described plasma membrane variance was resolved post-AAT augmentation therapy in vivo, the effects of which significantly altered the AATD neutrophil membrane proteome to that of a non-AATD COPD cell.These results provide strong insight into the mechanism of neutrophil driven airways disease associated with AATD. Therapeutic AAT augmentation modified the membrane proteome to that of a typical COPD cell, with implications for clinical practice.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Deficiência de alfa 1-Antitripsina , Volume Expiratório Forçado , Humanos , Neutrófilos , Proteoma , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Testes de Função Respiratória , alfa 1-Antitripsina , Deficiência de alfa 1-Antitripsina/tratamento farmacológico
18.
Thorax ; 75(4): 321-330, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31959730

RESUMO

INTRODUCTION: Alpha-1 antitrypsin (AAT) deficiency (AATD) is associated with early onset emphysema. The aim of this study was to investigate whether AAT binding to plasma constituents could regulate their activation, and in AATD, exploit this binding event to better understand the condition and uncover novel biomarkers of therapeutic efficacy. METHODS: To isolate AAT linker proteins, plasma samples were separated by size exclusion chromatography, followed by co-immunoprecipitation. AAT binding proteins were identified by mass spectrometry. Complement turnover and activation was determined by ELISA measurement of C3, C3a and C3d levels in plasma of healthy controls (n=15), AATD (n=51), non-AATD patients with obstructive airway disease (n=10) and AATD patients post AAT augmentation therapy (n=5). RESULTS: Direct binding of complement C3 to AAT was identified in vivo and in vitro. Compared with healthy controls, a breakdown product of C3, C3d, was increased in AATD (0.04 µg/mL vs 1.96 µg/mL, p=0.0002), with a significant correlation between radiographic pulmonary emphysema and plasma levels of C3d (R2=0.37, p=0.001). In vivo, AAT augmentation therapy significantly reduced plasma levels of C3d in comparison to patients not receiving AAT therapy (0.15 µg/mL vs 2.18 µg/mL, respectively, p=0.001). DISCUSSION: Results highlight the immune-modulatory impact of AAT on the complement system, involving an important potential role for complement activation in disease pathogenesis in AATD. The association between plasma C3d levels and pulmonary disease severity, that decrease in response to AAT augmentation therapy, supports the exploration of C3d as a candidate biomarker of therapeutic efficacy in AATD.


Assuntos
Complemento C3/metabolismo , Enfisema Pulmonar/epidemiologia , Transtornos Respiratórios/epidemiologia , Deficiência de alfa 1-Antitripsina/epidemiologia , Deficiência de alfa 1-Antitripsina/terapia , alfa 1-Antitripsina/uso terapêutico , Idoso , Análise de Variância , Biomarcadores/sangue , Western Blotting , Estudos de Casos e Controles , Comorbidade , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Enfisema Pulmonar/sangue , Enfisema Pulmonar/diagnóstico , Valores de Referência , Transtornos Respiratórios/sangue , Transtornos Respiratórios/diagnóstico , Índice de Gravidade de Doença , Estatísticas não Paramétricas , Resultado do Tratamento , Deficiência de alfa 1-Antitripsina/diagnóstico
19.
Front Immunol ; 11: 600033, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391268

RESUMO

Studies have endeavored to understand the cause for impaired antimicrobial killing by neutrophils of people with cystic fibrosis (PWCF). The aim of this study was to focus on the bacterial phagosome. Possible alterations in degranulation of cytoplasmic granules and changes in pH were assessed. Circulating neutrophils were purified from PWCF (n = 28), PWCF receiving ivacaftor therapy (n = 10), and healthy controls (n = 28). Degranulation was assessed by Western blot analysis and flow cytometry. The pH of phagosomes was determined by use of BCECF-AM-labelled Staphylococcus aureus or SNARF labelled Candida albicans. The antibacterial effect of all treatments tested was determined by colony forming units enumeration. Bacterial killing by CF and healthy control neutrophils were found to differ (p = 0.0006). By use of flow cytometry and subcellular fractionation the kinetics of intraphagosomal degranulation were found to be significantly altered in CF phagosomes, as demonstrated by increased primary granule CD63 (p = 0.0001) and myeloperoxidase (MPO) content (p = 0.03). In contrast, decreased secondary and tertiary granule CD66b (p = 0.002) and decreased hCAP-18 and MMP-9 (p = 0.02), were observed. After 8 min phagocytosis the pH in phagosomes of neutrophils of PWCF was significantly elevated (p = 0.0001), and the percentage of viable bacteria was significantly increased compared to HC (p = 0.002). Results demonstrate that the recorded alterations in phagosomal pH generate suboptimal conditions for MPO related peroxidase, and α-defensin and azurocidine enzymatic killing of Staphylococcus aureus and Pseudomonas aeruginosa. The pattern of dysregulated MPO degranulation (p = 0.02) and prolonged phagosomal alkalinization in CF neutrophils were normalized in vivo following treatment with the ion channel potentiator ivacaftor (p = 0.04). Our results confirm that alterations of circulating neutrophils from PWCF are corrected by CFTR modulator therapy, and raise a question related to possible delayed proton channel activity in CF.


Assuntos
Candida albicans/imunologia , Degranulação Celular/imunologia , Fibrose Cística/imunologia , Neutrófilos/imunologia , Fagossomos/imunologia , Staphylococcus aureus/imunologia , Adulto , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Neutrófilos/microbiologia , Neutrófilos/patologia , Fagossomos/microbiologia , Fagossomos/patologia
20.
Expert Rev Respir Med ; 13(11): 1041-1055, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31530195

RESUMO

Introduction: The major cause of morbidity and mortality in patients with cystic fibrosis (CF) is lung disease. Inflammation in the CF airways occurs from a young age and contributes significantly to disease progression and shortened life expectancy. Areas covered: In this review, we discuss the key immune cells involved in airway inflammation in CF, the contribution of the intrinsic genetic defect to the CF inflammatory phenotype, and anti-inflammatory strategies designed to overcome what is a critical factor in the pathogenesis of CF lung disease. Review of the literature was carried out using the MEDLINE (from 1975 to 2018), Google Scholar and The Cochrane Library databases. Expert opinion: Therapeutic interventions specifically targeting the defective CF transmembrane conductance regulator (CFTR) protein have changed the clinical landscape and significantly improved the outlook for CF. As survival estimates for people with CF increase, long-term management has become an important focus, with an increased need for therapies targeted at specific elements of inflammation, to complement CFTR modulator therapies.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fibrose Cística/patologia , Inflamação/tratamento farmacológico , Sistema Respiratório , Animais , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA