RESUMO
The O-antigen, a long polysaccharide that constitutes the distal part of the outer membrane-anchored lipopolysaccharide, is one of the critical components in the protective outer membrane of Gram-negative bacteria. Most species produce one of the structurally diverse O-antigens, with nearly all the polysaccharide components having complex structures made by the Wzx/Wzy pathway. This pathway produces repeat-units of mostly 3-8 sugars on the cytosolic face of the cytoplasmic membrane that is translocated by Wzx flippase to the periplasmic face and polymerized by Wzy polymerase to give long-chain polysaccharides. The Wzy polymerase is a highly diverse integral membrane protein typically containing 10-14 transmembrane segments. Biochemical evidence confirmed that Wzy polymerase is the sole driver of polymerization, and recent progress also began to demystify its interacting partner, Wzz, shedding some light to speculate how the proteins may operate together during polysaccharide biogenesis. However, our knowledge of how the highly variable Wzy proteins work as part of the O-antigen processing machinery remains poor. Here, we discuss the progress to the current understanding of repeat-unit polymerization and propose an updated model to explain the formation of additional short chain O-antigen polymers found in the lipopolysaccharide of diverse Gram-negative species and their importance in the biosynthetic process.
Assuntos
Proteínas de Bactérias , Antígenos O , Antígenos O/química , Antígenos O/metabolismo , Proteínas de Bactérias/metabolismo , Lipopolissacarídeos , Polissacarídeos Bacterianos , Bactérias Gram-Negativas/metabolismoRESUMO
Gut microbiome is of major interest due to its close relationship to health and disease. Bacteria usually vary in gene content, leading to functional variations within species, so resolution higher than species-level methods is needed for ecological and clinical relevance. We design a protocol to identify strains in selected species with high discrimination and in high numbers by amplicon sequencing of the flagellin gene. We apply the protocol to fecal samples from a human diet trial, targeting Escherichia coli. Across the 119 samples from 16 individuals, there are 1,532 amplicon sequence variants (ASVs), but only 32 ASVs are dominant in one or more fecal samples, despite frequent dominant strain turnover. Major strains in an intestine are found to be commonly accompanied by a large number of satellite cells, and many are identified as potential extraintestinal pathogens. The protocol could be used to track epidemics or investigate the intra- or inter-host diversity of pathogens.
Assuntos
Escherichia coli/metabolismo , Microbioma Gastrointestinal/genética , Transcriptoma/genética , Adulto , DNA Bacteriano/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fezes/microbiologia , Feminino , Flagelina/genética , Flagelina/metabolismo , Microbioma Gastrointestinal/fisiologia , Expressão Gênica/genética , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Intestinos , Masculino , Microbiota/genética , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodosRESUMO
The group A O antigen is the major surface polysaccharide of Salmonella enterica serovar Paratyphi A (SPA), and the focal point for most current vaccine development efforts. The SPA O-antigen repeat (O unit) is structurally similar to the group D1 O unit of S. enterica serovar Typhi, differing only in the presence of a terminal side-branch paratose (Par) in place of tyvelose (Tyv), both of which are attached by the glycosyltransferase WbaV. The two O-antigen gene clusters are also highly similar, but with a loss-of-function mutation in the group A tyv gene and the tandem amplification of wbaV in most SPA strains. In this study, we show that SPA strains consistently produce less O antigen than their group D1 counterparts and use an artificial group A strain (D1 Δtyv) to show this is due to inefficient Par attachment by WbaV. We also demonstrate that group A O-antigen production can be increased by overexpression of the wbaV gene in both the D1 Δtyv strain and two multi-wbaV SPA strains. These findings should be broadly applicable in ongoing vaccine development pipelines, where efficient isolation and purification of large quantities of O antigen is of critical importance.
Assuntos
Glicosiltransferases/metabolismo , Antígenos O/metabolismo , Salmonella paratyphi A/enzimologia , Vacinas Bacterianas , Mutação com Perda de Função/genética , Antígenos O/genética , Salmonella paratyphi A/genéticaRESUMO
Flagellin, the agent of prokaryotic flagellar motion, is very widely distributed and is the H antigen of serology. Flagellin molecules have a variable region that confers serotype specificity, encoded by the middle of the gene, and also conserved regions encoded by the two ends of the gene. We collected all available prokaryotic flagellin protein sequences and found the variable region diversity to be at two levels. In each species investigated, there are hypervariable region (HVR) forms without detectable homology in protein sequences between them. There is also considerable variation within HVR forms, indicating that some have been diverging for thousands of years and that interphylum horizontal gene transfers make a major contribution to the evolution of such atypical diversity.IMPORTANCE Bacterial and archaeal flagellins are remarkable in having a shared region with variation in housekeeping proteins and a region with extreme diversity, perhaps greater than for any other protein. Analysis of the 113,285 available full-gene sequences of flagellin genes from published bacterial and archaeal sequences revealed the nature and enormous extent of flagellin diversity. There were 35,898 unique amino acid sequences that were resolved into 187 clusters. Analysis of the Escherichia coli and Salmonella enterica flagellins revealed that the variation occurs at two levels. The first is the division of the variable regions into sequence forms that are so divergent that there is no meaningful alignment even within species, and these corresponded to the E. coli or S. enterica H-antigen groups. The second level is variation within these groups, which is extensive in both species. Shared sequence would allow PCR of the variable regions and thus strain-level analysis of microbiome DNA.
RESUMO
An ideal bacterial phylogenetic tree accurately retraces evolutionary history and accurately incorporates mutational, recombination and other events on the appropriate branches. Current strain-level bacterial phylogenetic analysis based on large numbers of genomes lacks reliability and resolution, and is hard to be replicated, confirmed and reused, because of the highly divergent nature of microbial genomes. We present SNPs and Recombination Events Tree (SaRTree), a pipeline using six "living trees" modules that addresses problems arising from the high numbers and variable quality of bacterial genome sequences. It provides for reuse of the tree and offers a major step toward global standardization of phylogenetic analysis by generating deposit files including all steps involved in phylogenetic inference. The tree itself is a "living tree" that can be extended by addition of more sequences, or the deposit can be used to vary the programs or parameters used, to assess the effect of such changes. This approach will allow phylogeny papers to meet the traditional responsibility of providing data and analysis that can be repeated and critically evaluated by others. We used the Acinetobacter baumannii global clone I to illustrate use of SaRTree to optimize tree resolution. An Escherichia coli tree was built from 351 sequences selected from 11,162 genome sequences, with the others added back onto well-defined branches, to show how this facility can greatly improve the outcomes from genome sequencing. SaRTree is designed for prokaryote strain-level analysis but could be adapted for other usage.
Assuntos
Bactérias/classificação , Biologia Computacional/métodos , Acinetobacter baumannii/genética , Bactérias/genética , Escherichia coli/genética , Evolução Molecular , Genoma Bacteriano , Filogenia , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
Escherichia coli includes clonal groups of both commensal and pathogenic strains, with some of the latter causing serious infectious diseases. O antigen variation is current standard in defining strains for taxonomy and epidemiology, providing the basis for many serotyping schemes for Gram-negative bacteria. This review covers the diversity in E. coli O antigen structures and gene clusters, and the genetic basis for the structural diversity. Of the 187 formally defined O antigens, six (O31, O47, O67, O72, O94 and O122) have since been removed and three (O34, O89 and O144) strains do not produce any O antigen. Therefore, structures are presented for 176 of the 181 E. coli O antigens, some of which include subgroups. Most (93%) of these O antigens are synthesized via the Wzx/Wzy pathway, 11 via the ABC transporter pathway, with O20, O57 and O60 still uncharacterized due to failure to find their O antigen gene clusters. Biosynthetic pathways are given for 38 of the 49 sugars found in E. coli O antigens, and several pairs or groups of the E. coli antigens that have related structures show close relationships of the O antigen gene clusters within clades, thereby highlighting the genetic basis of the evolution of diversity.
Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/química , Escherichia coli/genética , Antígenos O/química , Antígenos O/genética , Proteínas de Escherichia coli/química , Evolução Molecular , Variação GenéticaRESUMO
The 7th cholera pandemic began in 1961 in Sulawesi, Indonesia, and then spread around the world in at least three waves. However, the lack of genome sequences for Vibrio cholerae strains under long-term surveillance in East Asia, especially in China, has restricted our understanding of the dynamics of the intracountry and intercountry evolution and transmission of the 7th-pandemic clones. In this study, we obtained the genome sequences of 60 V. cholerae strains isolated in Shanghai, the largest port in the world and the largest city in China, from 1961 to 2011. Our whole-genome-based phylogeny of 7th-pandemic strains revealed that all but one fell into five "stages," most of which are single clades and share independent ancestors. Each stage dominated in succession for a period, with little overlap between them. In addition, two near-identical Shanghai strains belonging to a pre-7th-pandemic precursor and 4 nontoxigenic O1/O139 strains attributed to independent recombination events at the O-antigen loci were present. The major lineages of the 7th pandemic in Shanghai appeared to be closely related to V. cholerae strains isolated from South or Southeast Asia. Stage succession was consistently related to changes in society and human activity, implying that human-caused niche change may play a vital role in the cholera dynamics in Shanghai.IMPORTANCE V. cholerae is the causative agent of cholera, a life-threatening disease characterized by severe, watery diarrhea. The 7th pandemic started in Indonesia in 1961 and spread globally, currently infecting 1.3 million to 4 million people annually. Here, we applied whole-genome sequencing to analyze a long-term collection of V. cholerae clinical strains to reveal the phylogenetic background and evolutionary dynamics of the 7th pandemic in Shanghai, which had undergone breathtakingly rapid development in the last half-century. All but one of the Shanghai 7th-pandemic strains fell into five "stages" that were dominant in Shanghai and appeared to be closely related to 7th-pandemic strains of South or Southeast Asia. Our findings extended the understanding of the dynamics of the evolution and transmission of the 7th-pandemic clones in East Asia and the relationship between social changes and cholera epidemiology.
RESUMO
Capsules are a critical virulence factor in many pathogenic Escherichia coli, of which groups 2 and 3 capsules are synthesised by the ABC transporter pathway. The well-studied forms are in group 2 and much of our knowledge of group 3 is inferred from our understanding of group 2. We analyse six group 3 gene clusters including representatives of K10, K11 and K96, and find unexpected diversity. Groups 2 and 3 both have gene clusters with terminal regions 1 and 3 containing mostly genes shared by all members of both groups, plus a central region 2, that in group 2 has the genes for synthesising the serotype-specific repeat unit. We find that in all but one case group 3 gene clusters include, in addition to serotype-specific genes, a previously unrecognised set of shared genes in region 2 that probably codes for an additional structural element. Also, the six shared genes in regions 1 and 3 of group 3 exist in two very different sequence forms. It appears that the E. coli ABC transporter capsules have a very long history, with more fundamental diversity present in group 3, but greater diversity in the exposed strongly antigenic serotype-specific component encoded by region 2.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Cápsulas Bacterianas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Família Multigênica , Cápsulas Bacterianas/classificação , Escherichia coli/patogenicidade , Variação Genética , Polissacarídeos Bacterianos , Sorogrupo , Fatores de VirulênciaRESUMO
Cloning of whole polysaccharide biosynthesis gene clusters for expression in a common Escherichia coli tester strain has the major advantage of enabling direct functional comparisons between gene clusters that are normally found in different strains, where their expression is potentially under differential regulatory control. However, due to the large size of many of these gene clusters, classical cloning methods are highly inefficient, time-consuming, and/or labor-intensive. Here we describe a recently developed system, called the operon assembly protocol (OAP), in which yeast homologous recombination pathways are used to assemble overlapping PCR fragments onto a specially engineered yeast E. coli shuttle vector, resulting in full-length customizable gene cluster clones on single-copy plasmids. Multiple versions of the same gene cluster can also be assembled in parallel with genes deleted, replaced, or rearranged, allowing the function and/or specificity of individual genes to be examined. Since the vector can be easily modified to include other bacterial replicons, it can also be broadly applied to the functional analysis of a wide range of bacterial gene clusters and operons.
Assuntos
Clonagem Molecular/métodos , Escherichia coli/genética , Vetores Genéticos/genética , Recombinação Homóloga , Família Multigênica , Polissacarídeos/genética , Saccharomyces cerevisiae/genética , Deleção de Genes , Óperon , Plasmídeos/genética , Reação em Cadeia da Polimerase/métodosRESUMO
The Wzx flippase is a critical component of the O-antigen biosynthesis pathway, being responsible for the translocation of oligosaccharide O units across the inner membrane in Gram-negative bacteria. Recent studies have shown that Wzx has a strong preference for its cognate O unit, but the types of O-unit structural variance that a given Wzx can accommodate are poorly understood. In this study, we identified two Yersinia pseudotuberculosis Wzx that can distinguish between different terminal dideoxyhexose sugars on a common O-unit main-chain, despite both being able to translocate several other structurally-divergent O units. We also identified other Y. pseudotuberculosis Wzx that can translocate a structurally divergent foreign O unit with high efficiency, and thus exhibit an apparently relaxed substrate preference. It now appears that Wzx substrate preference is more complex than previously suggested, and that not all O-unit residues are equally important determinants of translocation efficiency. We propose a new "Structure-Specific Triggering" model in which Wzx translocation proceeds at a low level for a wide variety of substrates, with high-frequency translocation only being triggered by Wzx interacting with one or more preferred O-unit structural elements found on its cognate O unit(s).
Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Antígenos O/metabolismo , Yersinia pseudotuberculosis/enzimologia , Proteínas de Membrana Transportadoras/química , Antígenos O/química , Especificidade por SubstratoRESUMO
Translocation of lipid-linked oligosaccharides is a common theme across prokaryotes and eukaryotes. For bacteria, such activity is used in cell wall construction, polysaccharide synthesis, and the relatively recently discovered protein glycosylation. To the best of our knowledge, the Gram-negative inner membrane flippase Wzx was the first protein identified as being involved in oligosaccharide translocation, and yet we still have only a limited understanding of this protein after 3 decades of research. At present, Wzx is known to be a multitransmembrane protein with enormous sequence diversity that flips oligosaccharide substrates with varied degrees of preference. In this review, we provide an overview of the major findings for this protein, with a particular focus on substrate preference.
Assuntos
Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/metabolismo , Lipopolissacarídeos/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glicômica , Lipídeos de Membrana/química , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Antígenos O/metabolismo , Oligossacarídeos/metabolismoRESUMO
O-antigen polysaccharide is a major immunogenic feature of the lipopolysaccharide of Gram-negative bacteria, and most species produce a large variety of forms that differ substantially from one another. There are 18 known O-antigen forms in the Yersinia pseudotuberculosis complex, which are typical in being composed of multiple copies of a short oligosaccharide called an O unit. The O-antigen gene clusters are located between the hemH and gsk genes, and are atypical as 15 of them are closely related, each having one of five downstream gene modules for alternative main-chain synthesis, and one of seven upstream modules for alternative side-branch sugar synthesis. As a result, many of the genes are in more than one gene cluster. The gene order in each module is such that, in general, the earlier a gene product functions in O-unit synthesis, the closer the gene is to the 5Î end for side-branch modules or the 3Î end for main-chain modules. We propose a model whereby natural selection could generate the observed pattern in gene order, a pattern that has also been observed in other species.
Assuntos
Evolução Molecular , Antígenos O/genética , Polissacarídeos Bacterianos/genética , Yersinia pseudotuberculosis/classificação , Yersinia pseudotuberculosis/genética , Polissacarídeos Bacterianos/classificaçãoRESUMO
We have developed a system called the Operon Assembly Protocol (OAP), which takes advantage of the homologous recombination DNA repair pathway in Saccharomyces cerevisiae to assemble full-length operons from a series of overlapping PCR products into a specially engineered yeast-Escherichia coli shuttle vector. This flexible, streamlined system can be used to assemble several operon clones simultaneously, and each clone can be expressed in the same E. coli tester strain to facilitate direct functional comparisons. We demonstrated the utility of the OAP by assembling and expressing a series of E. coli O1A O-antigen gene cluster clones containing various gene deletions or replacements. We then used these constructs to assess the substrate preferences of several Wzx flippases, which are responsible for translocation of oligosaccharide repeat units (O units) across the inner membrane during O-antigen biosynthesis. We were able to identify several O unit structural features that appear to be important determinants of Wzx substrate preference. The OAP system should be broadly applicable for the genetic manipulation of any bacterial operon and can be modified for use in other host species. It could also have potential uses in fields such as glycoengineering.
Assuntos
Clonagem Molecular/métodos , Recombinação Homóloga , Óperon , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Deleção de Genes , Vetores Genéticos , Proteínas de Membrana Transportadoras/genética , Família Multigênica , Antígenos O/biossíntese , Antígenos O/genética , Antígenos O/metabolismo , Reação em Cadeia da Polimerase/métodosRESUMO
Vibrio cholerae has caused seven cholera pandemics since 1817, imposing terror on much of the world, but bacterial strains are currently only available for the sixth and seventh pandemics. The El Tor biotype seventh pandemic began in 1961 in Indonesia, but did not originate directly from the classical biotype sixth-pandemic strain. Previous studies focused mainly on the spread of the seventh pandemic after 1970. Here, we analyze in unprecedented detail the origin, evolution, and transition to pandemicity of the seventh-pandemic strain. We used high-resolution comparative genomic analysis of strains collected from 1930 to 1964, covering the evolution from the first available El Tor biotype strain to the start of the seventh pandemic. We define six stages leading to the pandemic strain and reveal all key events. The seventh pandemic originated from a nonpathogenic strain in the Middle East, first observed in 1897. It subsequently underwent explosive diversification, including the spawning of the pandemic lineage. This rapid diversification suggests that, when first observed, the strain had only recently arrived in the Middle East, possibly from the Asian homeland of cholera. The lineage migrated to Makassar, Indonesia, where it gained the important virulence-associated elements Vibrio seventh pandemic island I (VSP-I), VSP-II, and El Tor type cholera toxin prophage by 1954, and it then became pandemic in 1961 after only 12 additional mutations. Our data indicate that specific niches in the Middle East and Makassar were important in generating the pandemic strain by providing gene sources and the driving forces for genetic events.
Assuntos
Cólera/epidemiologia , Pandemias , Vibrio cholerae/genética , Cólera/microbiologia , Evolução Molecular , Genoma Bacteriano , Humanos , Anotação de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
The Wzx/Wzy O-antigen pathway involves synthesis of a repeat unit (O unit) consisting of 3 to 8 sugars on an inner-membrane-embedded lipid carrier. These O units are translocated across the membrane to its periplasmic face by Wzx, while retaining linkage to the carrier, and then polymerized by Wzy to O-antigen polymer, which WaaL ligase transfers to a lipopolysaccharide precursor to complete lipopolysaccharide synthesis, concomitantly releasing the lipid carrier. This lipid carrier is also used for peptidoglycan assembly, and sequestration is known to be toxic. Thus, O-unit synthesis must involve precise regulation to meet demand but avoid overproduction. Here we show that loss of WaaL reverses a known growth defect in a Salmonella mutant that otherwise accumulates O-unit intermediates and propose that WaaL is also involved in a novel feedback mechanism to regulate O-unit synthesis, based on the availability of O units on the periplasmic face of the membrane.
RESUMO
In Yersinia pseudotuberculosis complex, the O-antigen of LPS is used for the serological characterization of strains, and 21 serotypes have been identified to date. The O-antigen biosynthesis gene cluster and corresponding O-antigen structure have been described for 18, leaving O:8, O:13 and O:14 unresolved. In this study, two O:8 isolates were examined. The O-antigen gene cluster sequence of strain 151 was near identical to serotype O:4a, though a frame-shift mutation was found in ddhD, while No. 6 was different to 151 and carried the O:1b gene cluster. Structural analysis revealed that No. 6 produced a deeply truncated LPS, suggesting a mutation within the waaF gene. Both ddhD and waaF were cloned and expressed in 151 and No. 6 strains, respectively, and it appeared that expression of ddhD gene in strain 151 restored the O-antigen on LPS, while waaF in No. 6 resulted in an LPS truncated less severely but still without the O-antigen, suggesting that other mutations occurred in this strain. Thus, both O:8 isolates were found to be spontaneous O-antigen-negative mutants derived from other validated serotypes, and we propose to remove this serotype from the O-serotyping scheme, as the O:8 serological specificity is not based on the O-antigen.
Assuntos
Lipopolissacarídeos/imunologia , Mutação/genética , Antígenos O/genética , Infecções por Yersinia pseudotuberculosis/diagnóstico , Yersinia pseudotuberculosis/imunologia , Biologia Computacional , Humanos , Lipopolissacarídeos/química , Estrutura Molecular , Família Multigênica/genética , Antígenos O/química , Antígenos O/isolamento & purificação , Sorogrupo , Sorotipagem , Especificidade da Espécie , Yersinia pseudotuberculosis/genéticaRESUMO
The Wzx/Wzy-dependent pathway is the predominant pathway for O-antigen production in Gram-negative bacteria. The O-antigen repeat unit (O unit) is an oligosaccharide that is assembled at the cytoplasmic face of the membrane on undecaprenyl pyrophosphate. Wzx then flips it to the periplasmic face for polymerization by Wzy, which adds an O unit to the reducing end of a growing O-unit polymer in each round of polymerization. Wzx and Wzy both exhibit enormous sequence diversity. It has recently been shown that, contrary to earlier reports, the efficiency of diverse Wzx forms can be significantly reduced by minor structural variations to their native O-unit substrate. However, details of Wzy substrate specificity remain unexplored. The closely related galactose-initiated Salmonella O antigens present a rare opportunity to address these matters. The D1 and D2 O units differ only in an internal mannose-rhamnose linkage, and D3 expresses both in the same chain. D1 and D2 polymerases were shown to be specific for O units with their respective α or ß configuration for the internal mannose-rhamnose linkage. The Wzy encoded by D3 gene cluster polymerizes only D1 O units, and deleting the gene does not eliminate polymeric O antigen, both observations indicating the presence of an additional wzy gene. The levels of Wzx and Wzy substrate specificity will affect the ease with which new O units can evolve, and also our ability to modify O antigens, capsules or secreted polysaccharides by glyco-engineering, to generate novel polysaccharides, as the Wzx/Wzy-dependent pathway is responsible for much of the diversity.
Assuntos
Proteínas de Bactérias/metabolismo , Glicosiltransferases/metabolismo , Antígenos O/biossíntese , Salmonella typhimurium/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glicosiltransferases/química , Glicosiltransferases/genética , Família Multigênica , Antígenos O/química , Salmonella typhimurium/química , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Especificidade por SubstratoRESUMO
Bacterial Wzx flippases translocate (flip) short oligosaccharide repeat units (O units) across the inner membrane into the periplasm, which is a critical step in the assembly of many O antigens, capsules and other surface polysaccharides. There is enormous diversity in O antigens and capsules in particular, even within species. Wzx proteins are similarly diverse, but it has been widely accepted that they have significant specificity only for the first sugar of an O unit. In this study, we analysed the Wzx from the Salmonella enterica group C2 O antigen gene cluster, which is a unique and divergent member of a set of gene clusters that produce galactose-initiated O antigens. We demonstrate that this Wzx has a strong preference for the presence of an abequose side-branch, which manifests in a reduction of long-chain O antigen and a major growth defect. This contributes to a growing body of evidence that, contrary to earlier proposals, Wzx flippases commonly exhibit a strong preference for the structure of their native O unit.
Assuntos
Genes Bacterianos , Proteínas de Membrana Transportadoras/metabolismo , Antígenos O/biossíntese , Antígenos O/genética , Salmonella enterica/genética , Salmonella enterica/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Técnicas de Inativação de Genes , Lipopolissacarídeos/metabolismo , Proteínas de Membrana Transportadoras/genética , Família Multigênica , Antígenos O/química , Salmonella enterica/crescimento & desenvolvimentoRESUMO
The most common system for synthesis of cell surface polysaccharides is the Wzx/Wzy-dependent pathway, which involves synthesis, on the cytoplasmic face of the cell membrane, of repeat units, which are then translocated to the periplasmic face by a Wzx translocase and then polymerized by Wzy to generate the polysaccharide. One such polysaccharide is O antigen, which is incorporated into lipopolysaccharide (LPS). The O antigen is extremely variable, with over 186 forms in Escherichia coli. Wzx proteins are also very diverse, but they have been thought to be specific only for the first sugar of the repeat units. However, recent studies demonstrated examples in which Wzx translocases have considerable preference for their native repeat unit, showing that specificity can extend well beyond the first sugar. These results appear to be in conflict with the early conclusions, but they involved specificity for side branch residues and could be a special case. Here we take six Wzx translocases that were critical in the earlier studies on the importance of the first sugar and assess their ability to translocate the Escherichia coli O16 and O111 repeat units. We use gene replacements to optimize maintenance of expression level and show that under these conditions the native translocases are the most effective for their native repeat unit, being, respectively, 64-fold and 4-fold more effective than the next best. We conclude that Wzx translocases are commonly adapted to their native repeat unit, which provides an explanation for the great diversity of wzx genes.
Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Variação Genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Antígenos O/química , Sequência de Carboidratos , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Dados de Sequência Molecular , Antígenos O/biossínteseRESUMO
This review covers the structures and genetics of the 46 O antigens of Salmonella, a major pathogen of humans and domestic animals. The variation in structures underpins the serological specificity of the 46 recognized serogroups. The O antigen is important for the full function and virulence of many bacteria, and the considerable diversity of O antigens can confer selective advantage. Salmonella O antigens can be divided into two major groups: those which have N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine (GalNAc) and those which have galactose (Gal) as the first sugar in the O unit. In recent years, we have determined 21 chemical structures and sequenced 28 gene clusters for GlcNAc-/GalNAc-initiated O antigens, thus completing the structure and DNA sequence data for the 46 Salmonella O antigens. The structures and gene clusters of the GlcNAc-/GalNAc-initiated O antigens were found to be highly diverse, and 24 of them were found to be identical or closely related to Escherichia coli O antigens. Sequence comparisons indicate that all or most of the shared gene clusters were probably present in the common ancestor, although alternative explanations are also possible. In contrast, the better-known eight Gal-initiated O antigens are closely related both in structures and gene cluster sequences.