Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; : 1119-1126, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140782

RESUMO

Multiresponsive hydrogels are valuable as biomaterials due to their ability to respond to multiple biologically relevant stimuli, i.e., temperature, pH, or reactive oxygen species (ROS), which can be present simultaneously in the body. In this work, we synthesize triple-responsive hydrogels through UV light photopolymerization of selected monomer compositions that encompass thermoresponsive N-isopropylacrylamide (NIPAM), pH-responsive methacrylic acid (MAA), and a tailor-made ROS-responsive diacrylate thioether monomer (EG3SA). As a result, smart P[NIPAMx-co-MAAy-co-(EG3SA)z] hydrogels capable of being manufactured by digital light processing (DLP) 4D printing are obtained. The thermo-, pH-, and ROS-response of the hydrogels are studied by swelling tests and rheological measurements at different temperatures (25 and 37 °C), pHs (3, 5, 7.4, and 11), and in the absence or presence of ROS (H2O2). The hydrogels are employed as matrixes for the encapsulation of ketoprofen (KET), an anti-inflammatory drug that shows a tunable release, depending on the hydrogel composition and stimuli applied. The cytotoxicity properties of the hydrogels are tested in vitro with mouse embryonic fibroblasts (NIH 3T3) and RAW 264.7 murine macrophage (RAW) cells. Finally, the anti-inflammatory properties are assessed, and the results exhibit a ≈70% nitric oxide reduction up to base values of pro-inflammatory RAW cells, which highlights the anti-inflammatory capacity of P[NIPAM80-co-MAA15-co-(EG3SA)5] hydrogels, per se, without being necessary to encapsulate an anti-inflammatory drug within their network. It opens the route for the fabrication of customizable 4D printable scaffolds for the effective treatment of inflammatory pathologies.

2.
Chem Mater ; 36(3): 1262-1272, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38370279

RESUMO

Reactive oxygen species (ROS) play a key role in several biological functions like regulating cell survival and signaling; however, their effect can range from beneficial to nondesirable oxidative stress when they are overproduced causing inflammation or cancer diseases. Thus, the design of tailor-made ROS-responsive polymers offers the possibility of engineering hydrogels for target therapies. In this work, we developed thioether-based ROS-responsive difunctional monomers from ethylene glycol/thioether acrylate (EGnSA) with different lengths of the EGn chain (n = 1, 2, 3) by the thiol-Michael addition click reaction. The presence of acrylate groups allowed their photopolymerization by UV light, while the thioether groups conferred ROS-responsive properties. As a result, smart PEGnSA hydrogels were obtained, which could be processed by four-dimensional (4D) printing. The mechanical properties of the hydrogels were determined by rheology, pointing out a decrease of the elastic modulus (G') with the length of the EG segment. To enhance the stability of the hydrogels after swelling, the EGnSA monomers were copolymerized with a polar monomer, 2-hydroxyethyl acrylate (HEA), leading to P[(EGnSA)x-co-HEAy] with improved compatibility in aqueous media, making it a less brittle material. Swelling properties of the hydrogels increased in the presence of hydrogen peroxide, a kind of ROS, reaching values of ≈130% for P[(EG3SA)7-co-HEA93] which confirms the stimuli-responsive properties. Then, the P[(EG3SA)x-co-HEAy] hydrogels were employed as matrixes for the encapsulation of a chemotherapeutic drug, 5-fluorouracil (5FU), which showed sustained release over time modulated by the presence of H2O2. Finally, the effect of the 5-FU release from P[(EG3SA)x-co-HEAy] hydrogels was tested in vitro with melanoma cancer cells B16F10, pointing out B16F10 growth inhibition values in the range of 40-60% modulated by the EG3SA percentage and the presence or absence of ROS agents, thus confirming their excellent ROS-responsive properties for the treatment of localized pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA