Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 112: 117898, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39216384

RESUMO

In this study, proximal fleximer nucleos(t)ide analogues of Bemnifosbuvir were synthesized and evaluated for their potential to serve as antiviral therapeutics. The final parent flex-nucleoside and ProTide modified flex-nucleoside analogues were tested against several viral families including flaviviruses, filoviruses, and coronaviruses. Modest activity against Zaire Ebola virus was observed at 30 µM for compound ProTide modified analogue. Neither compound exhibited activity for any of the other viruses tested. The parent flex-nucleoside analogue was screened for toxicity in CD-1 mice and showed no adverse effects up to 300 mg/kg, the maximum concentration tested.


Assuntos
Antivirais , Antivirais/síntese química , Antivirais/farmacologia , Antivirais/química , Antivirais/farmacocinética , Animais , Camundongos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Humanos , Nucleosídeos de Purina/síntese química , Nucleosídeos de Purina/farmacologia , Nucleosídeos de Purina/química , Nucleosídeos de Purina/farmacocinética
2.
ACS Pharmacol Transl Sci ; 7(8): 2379-2390, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39156742

RESUMO

Efavirenz (EFV) is a commonly used drug to treat human immunodeficiency virus infection and is known to exert adverse effects on the brain. Although it is known that EFV is associated with abnormal plasma lipid levels, the changes in the spatial localization of individual lipid molecules in brain tissue following EFV treatment are yet to be explored. In this study, we employed a matrix-assisted laser desorption/ionization mass spectrometry imaging approach to determine region-specific lipid alterations in mouse brains following EFV treatment. We detected unique spatial localization patterns of phosphatidylcholine (PC), sphingomyelin (SM), ceramide phosphoinositol (PI-Cer), and hexosylceramide (HexCer) molecules in the mouse brain. Interestingly, PC(32:0), PC(38:5), and SM(36:1;O2) showed high abundance in the hippocampus region, whereas PI-Cer(38:8) exhibited low abundance in the hippocampus region of the EFV-treated mouse brains. Additionally, we observed low abundance of PC(38:6), PC(40:6), and PI-Cer(40:3) in the thalamus region of the EFV-treated mouse brains. Furthermore, SM(40:1;O2), SM(42:2;O2), SM(42:1;O2), SM(43:2;O2), and SM(43:1;O2) exhibited their accumulation in the corpus callosum region of the EFV-treated mouse brains as compared to controls. However, HexCer(42:1;O3) exhibited depletion in the corpus callosum region in response to EFV treatment. To characterize the expression patterns of proteins, including lipid metabolizing enzymes, in response to EFV treatment, mass spectrometry-based proteomics was utilized. From these, the expression levels of 12 brain proteins were found to be significantly decreased following EFV treatment. Taken together, these multiomics data provide important insights into the effects of EFV on brain lipid metabolism.

3.
Blood Adv ; 8(15): 3880-3892, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739710

RESUMO

ABSTRACT: Provirus integration site for Moloney murine leukemia virus (PIM) family serine/threonine kinases perform protumorigenic functions in hematologic malignancies and solid tumors by phosphorylating substrates involved in tumor metabolism, cell survival, metastasis, inflammation, and immune cell invasion. However, a comprehensive understanding of PIM kinase functions is currently lacking. Multiple small-molecule PIM kinase inhibitors are currently being evaluated as cotherapeutics in patients with cancer. To further illuminate PIM kinase functions in cancer, we deeply profiled PIM1 substrates using the reverse in-gel kinase assay to identify downstream cellular processes targetable with small molecules. Pathway analyses of putative PIM substrates nominated RNA splicing and ribosomal RNA (rRNA) processing as PIM-regulated cellular processes. PIM inhibition elicited reproducible splicing changes in PIM-inhibitor-responsive acute myeloid leukemia (AML) cell lines. PIM inhibitors synergized with splicing modulators targeting splicing factor 3b subunit 1 (SF3B1) and serine-arginine protein kinase 1 (SRPK1) to kill AML cells. PIM inhibition also altered rRNA processing, and PIM inhibitors synergized with an RNA polymerase I inhibitor to kill AML cells and block AML tumor growth. These data demonstrate that deep kinase substrate knowledge can illuminate unappreciated kinase functions, nominating synergistic cotherapeutic strategies. This approach may expand the cotherapeutic armamentarium to overcome kinase inhibitor-resistant disease that limits durable responses in malignant disease.


Assuntos
Leucemia Mieloide Aguda , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-pim-1 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Humanos , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Camundongos , Animais , Linhagem Celular Tumoral , Especificidade por Substrato , Splicing de RNA/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Adv ; 9(46): eadi5921, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976356

RESUMO

Aberrant activation of Ras/Raf/mitogen-activated protein kinase (MAPK) signaling is frequently linked to metastatic prostate cancer (PCa); therefore, the characterization of modulators of this pathway is critical for defining therapeutic vulnerabilities for metastatic PCa. The lysine methyltransferase SET and MYND domain 3 (SMYD3) methylates MAPK kinase kinase 2 (MAP3K2) in some cancers, causing enhanced activation of MAPK signaling. In PCa, SMYD3 is frequently overexpressed and associated with disease severity; however, its molecular function in promoting tumorigenesis has not been defined. We demonstrate that SMYD3 critically regulates tumor-associated phenotypes via its methyltransferase activity in PCa cells and mouse xenograft models. SMYD3-dependent methylation of MAP3K2 promotes epithelial-mesenchymal transition associated behaviors by altering the abundance of the intermediate filament vimentin. Furthermore, activation of the SMYD3-MAP3K2 signaling axis supports a positive feedback loop continually promoting high levels of SMYD3. Our data provide insight into signaling pathways involved in metastatic PCa and enhance understanding of mechanistic functions for SMYD3 to reveal potential therapeutic opportunities for PCa.


Assuntos
Neoplasias da Próstata , Masculino , Camundongos , Animais , Humanos , Neoplasias da Próstata/genética , Transdução de Sinais , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Metiltransferases/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , MAP Quinase Quinase Quinase 2/genética , MAP Quinase Quinase Quinase 2/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
5.
Prostate ; 79(16): 1837-1851, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31524299

RESUMO

BACKGROUND: Advanced prostate cancers depend on protein synthesis for continued survival and accelerated rates of metabolism for growth. RNA polymerase I (Pol I) is the enzyme responsible for ribosomal RNA (rRNA) transcription and a rate-limiting step for ribosome biogenesis. We have shown using a specific and sensitive RNA probe for the 45S rRNA precursor that rRNA synthesis is increased in prostate adenocarcinoma compared to nonmalignant epithelium. We have introduced a first-in-class Pol I inhibitor, BMH-21, that targets cancer cells of multiple origins, and holds potential for clinical translation. METHODS: The effect of BMH-21 was tested in prostate cancer cell lines and in prostate cancer xenograft and mouse genetic models. RESULTS: We show that BMH-21 inhibits Pol I transcription in metastatic, castration-resistant, and enzalutamide treatment-resistant prostate cancer cell lines. The genetic abrogation of Pol I effectively blocks the growth of prostate cancer cells. Silencing of p53, a pathway activated downstream of Pol I, does not diminish this effect. We find that BMH-21 significantly inhibited tumor growth and reduced the Ki67 proliferation index in an enzalutamide-resistant xenograft tumor model. A decrease in 45S rRNA synthesis demonstrated on-target activity. Furthermore, the Pol I inhibitor significantly inhibited tumor growth and pathology in an aggressive genetically modified Hoxb13-MYC|Hoxb13-Cre|Ptenfl/fl (BMPC) mouse prostate cancer model. CONCLUSION: Taken together, BMH-21 is a novel promising molecule for the treatment of castration-resistant prostate cancer.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , RNA Polimerase I/antagonistas & inibidores , Animais , Benzamidas , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Nitrilas , Células PC-3 , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/enzimologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , Distribuição Aleatória , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Prostate ; 78(13): 992-1000, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29851094

RESUMO

BACKGROUND: Loss or mutation of PTEN alleles at 10q23 in combination with 8q24 amplification (encompassing MYC) are common findings in aggressive, human prostate cancer. Our group recently developed a transgenic murine model of prostate cancer involving prostate-specific Pten deletion and forced expression of MYC under the control of the Hoxb13 promoter. MYC overexpression cooperated with Pten loss to recapitulate lethal, human prostate cancer. METHOD: We now report on the generation of two mouse prostate cancer cell lines, BMPC1 and BMPC2, derived from a lymph node, and liver metastasis, respectively. RESULTS: Both cell lines demonstrate a phenotype consistent with adenocarcinoma and grew under standard tissue culture conditions. Androgen receptor (AR) protein expression is minimal (BMPC1) or absent (BMPC2) consistent with AR loss observed in the BMPC mouse model of invasive adenocarcinoma. Growth in media containing charcoal-stripped serum resulted in an increase in AR mRNA in BMPC1 cells with no effect on protein expression, unless androgens were added, in which case AR protein was stabilized, and showed nuclear localization. AR expression in BMPC2 cells was not effected by growth media or treatment with androgens. Treatment with an anti-androgen/castration or androgen supplemented media did not affect in vitro or in vivo growth of either cell line, irrespective of nuclear AR detection. DISCUSSION: These cell lines are a novel model of androgen-insensitive prostatic adenocarcinoma driven by MYC over-expression and Pten loss.


Assuntos
Adenocarcinoma/patologia , Linhagem Celular Tumoral , PTEN Fosfo-Hidrolase/genética , Próstata/patologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Adenocarcinoma/genética , Alelos , Animais , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Masculino , Camundongos , Neoplasias da Próstata/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA